Inspired by a patient
Abstract
Background: Chromosome 17p13.3 is a region of genomic instability associated with different neurodevelopmental diseases. The malformation spectrum of 17p13.3 microdeletions ranges from an isolated lissencephaly sequence to Miller-Dieker syndrome, while 17p13.3 microduplications result in autism, learning disabilities, microcephaly and other brain malformations. This study aims to provide a more comprehensive delineation of the clinical and genetic characteristics associated with 17p13.3 alterations.
Methods: We retrospectively analyzed the next-generation sequencing (NGS) data of more than 40 thousand patients from January 2016 to December 2021 and identified 38 pediatric patients with copy-number variations (CNVs) or single-nucleotide variations (SNVs) in 17p13.3 region. Published patients with CNVs in the 17p13.3 region were also collected and we performed a Chi-square test to compare the phenotype spectrum of microdeletions and microduplications.
Results: Among the 27 CNV patients, 20 patients with microdeletions and 7 patients with microduplications were found. PAFAH1B1 was the most frequently deleted gene and CRK was the most frequently duplicated gene. Affected genes in 11 SNV patients included PAFAH1B1 and PRPF8. Developmental delay was the most common abnormality detected in the 38 patients (29/38, 76.3%). Of note, Case 10 presented omphalocele and Case 23 presented scoliosis, webbed neck and bone cyst, all of which were unusual variant phenotypes in this region. The Chi-square test revealed that epilepsy, lissencephaly and short stature were statistically significant with microdeletions, while behavioral abnormalities and hand and foot abnormalities were significant with microduplications (p < 0.01).
Conclusions: While PAFAH1B1, YWHAE and CRK are associated with major phenotypes of 17p13.3, RTN4RL1 may be involved in white matter changes and HIC1 might contribute to the occurrence of omphalocele. This study provided a comprehensive understanding of genetic information and phenotype spectrum of the 17p13.3 region.
Emrick LT, Rosenfeld JA, Lalani SR, Jain M, Desai NK, Larson A, Kripps K, Vanderver A, Taft RJ, Bluske K, Perry D, Nagakura H, Immken LL, Burrage LC, Bacino CA, Belmont JW, Network UD, Lee B. Microdeletions excluding YWHAE and PAFAH1B1 cause a unique leukoencephalopathy: further delineation of the 17p13.3 microdeletion spectrum. Genet Med. 2019 Jul;21(7):1652-1656. doi: 10.1038/s41436-018-0358-0. Epub 2018 Dec 20. PMID: 30568308; PMCID: PMC6586530.
Abstract
Purpose: Brain malformations caused by 17p13.3 deletions include lissencephaly with deletions of the larger Miller-Dieker syndrome region or smaller deletions of only PAFAH1B1, white matter changes, and a distinct syndrome due to deletions including YWHAE and CRK but sparing PAFAH1B1. We sought to understand the significance of 17p13.3 deletions between the YWHAE/CRK and PAFAH1B1 loci.
Methods: We analyzed the clinical features of six individuals from five families with 17p13.3 deletions between and not including YWHAE/CRK and PAFAH1B1 identified among individuals undergoing clinical chromosomal microarray testing or research genome sequencing.
Results: Five individuals from four families had multifocal white matter lesions while a sixth had a normal magnetic resonance image. A combination of our individuals and a review of those in the literature with white matter changes and deletions in this chromosomal region narrows the overlapping region for this brain phenotype to ~345 kb, including 11 RefSeq genes, with RTN4RL1 haploinsufficiency as the best candidate for causing this phenotype.
Conclusion: While previous literature has hypothesized dysmorphic features and white matter changes related to YWHAE, our cohort contributes evidence to the presence of additional genetic changes within 17p13.3 required for proper brain development.
Barros Fontes MI, Dos Santos AP, Rossi Torres F, Lopes-Cendes I, Cendes F, Appenzeller S, Kawasaki de Araujo T, Lopes Monlleó I, Gil-da-Silva-Lopes VL. 17p13.3 Microdeletion: Insights on Genotype-Phenotype Correlation. Mol Syndromol. 2017 Jan;8(1):36-41. doi: 10.1159/000452753. Epub 2016 Nov 25. PMID: 28232781; PMCID: PMC5260540.
Abstract
Microdeletions in the chromosomal region 17p13.3 are associated with neuronal migration disorders, and PAFAB1H1 is the main gene involved. The largest genomic imbalances, including the YWHAE and CRK genes, cause more severe structural abnormalities of the brain and other associated dysmorphic features. Here, we describe a 3-year-old boy with a microdeletion in 17p13.3 presenting with minor facial dysmorphisms, a cleft palate, neurodevelopmental delay, and behavioral disorder with no structural malformation of the brain. The patient was evaluated by a clinician using a standard protocol. Laboratory investigation included GTG-banding, whole-genome AGH, and array-CGH. Whole-genome AGH and array-CGH analysis identified an estimated 2.1-Mb deletion in the 17p13.3 region showing haploinsufficiency of the YWHAE, CRK, H1C1, and OVCA1 genes and no deletion of PAFAH1B1. The complex gene interaction on brain development and function is illustrated in the genotype-phenotype correlation described here. This report reinforces the importance of the 17p13.3 region in developmental abnormalities and highlights the weak implication of the HIC1 and OVCA1 genes in palatogenesis.
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet. 2018 Mar 23;9:80. doi: 10.3389/fgene.2018.00080. PMID: 29628935; PMCID: PMC5876250.
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
No comments:
Post a Comment