However, Lucy has an extraordinary talent and it is by using this natural talent, Lucy is able to communicate.
World-renowned, pianist, Lang Lang and pop sensation, Mika crowned 13-year-old Lucy, the ‘unofficial’ winner of the competition with her stunning performance of Debussy’s Arabesque No1, which she performed in front of 2000 people at the Royal Festival Hall.
Lucy was invited to perform at HRH King‘s Coronation Concert at Windsor Castle, where she played a note perfect performance of Bach Prelude in C in front of 18 million people.
https://www.lucythepianist.com/ (videos at link)
Verbesselt J, Breckpot J, Zink I, Swillen A. Language Profiles of School-Age Children With 16p11.2 Copy Number Variants in a Clinically Ascertained Cohort. J Speech Lang Hear Res. 2024 Nov 7;67(11):4487-4503. doi: 10.1044/2024_JSLHR-24-00257. Epub 2024 Oct 17. PMID: 39418585; PMCID: PMC11567083.
Abstract
Purpose: Individuals with proximal 16p11.2 copy number variants (CNVs), either deletions (16p11.2DS) or duplications (16p11.2Dup), are predisposed to neurodevelopmental difficulties and disorders, such as language disorders, intellectual disability, and autism spectrum disorder. The purpose of the current study was to characterize language profiles of school-age children with proximal 16p11.2 CNVs, in relation to the normative sample and unaffected siblings of children with 16p11.2DS.
Method: Standardized language tests were conducted in 33 school-age children with BP4-BP5 16p11.2 CNVs and eight unaffected siblings of children with 16p11.2DS to evaluate language production and comprehension skills across various language domains. A standardized intelligence test was also administered, and parents completed a standardized questionnaire to assess autistic traits. Language profiles were compared across 16p11.2 CNVs and intrafamilial pairs. The influence of nonverbal intelligence and autistic traits on language outcomes was investigated.
Results: No significant differences were found between children with 16p11.2DS and those with 16p11.2Dup, although both groups exhibited significantly poorer language skills compared to the normative sample and unaffected siblings of children with 16p11.2DS. Severe language deficits were identified in 70% of individuals with 16p11.2 CNVs across all language subdomains, with significantly better receptive vocabulary skills than overall receptive language abilities. In children with 16p11.2DS, expressive language deficits were more pronounced than receptive deficits. In contrast, only in children with 16p11.2Dup did nonverbal intelligence influence their language outcomes.
Conclusions: The current study contributes to the deeper understanding of language profiles in 16p11.2 CNVs in a clinically ascertained cohort, indicating generalized deficits across multiple language domains, rather than a syndrome-specific pattern targeting specific subdomains. The findings underscore the importance of early diagnosis, targeted therapy, and monitoring of language skills in children with 16p11.2 CNVs.
Tang D, Chen A, Xu J, Huang Y, Fan J, Wang J, Zhu H, Pi G, Yang L, Xiong F, Luo Z, Li G, Zeng L, Zhu S. Genetic analysis of partial duplication of the long arm of chromosome 16. BMC Med Genomics. 2024 Dec 23;17(1):294. doi: 10.1186/s12920-024-02059-3. PMID: 39716170; PMCID: PMC11667835.
Abstract
Background: Pure partial trisomy 16q12.1q22.1 is a rare chromosome copy number variant (CNV). The primary clinical phenotypes associated with this syndrome include abnormal facial morphology, global developmental delay (GDD), short stature, and reported predisposing factors for atypical behavior, autism, the development of learning disabilities, and neuropsychiatric disorders. The dosage-sensitive genes associated with partial trisomy are not disclosed preventing to establish a genotype-phenotype correlation.
Methods: We report a case of a Chinese patient diagnosed with GDD and an abnormal facial shape, who was found to have partial trisomy 16 through karyotyping and high-throughput sequencing analysis. Karyotype and CNV tracing analyses were also conducted on the biological parents of the patient to assess for any chromosomal structural abnormalities. Additionally, we included 29 patients with pure partial trisomy 16q, reported in the DECIPHER database and the literature. We and performed a genotype-phenotype correlation analysis.
Results: The proband, a 2-year-old female, was found to have a de novo 21.96 Mb duplication located between 16q12.1q22.1, with no other deletions observed on other chromosomes, indicating a pure partial trisomy of 16q. Through genotype and phenotype analysis of 29 individuals, we found that patients with the duplicated region located at the distal region of 16q may exhibit more severe symptoms than those with duplication at the proximal region; however, no relationship was identified between phenotype and the size of the duplicated segment.
Conclusion: We report, for the first time, a patient with partial trisomy 16q validated by multiple genetic tests, including CNV-seq, whole exome sequencing (WES), and karyotyping. It is speculated that partial trisomy of 16q may be associated with continuous gene duplication. However, functional studies are necessary to identify the causative gene or critical region linked to duplication syndrome of chromosome 16q.