Thursday, April 4, 2019

Treatable inborn errors of metabolism causing epilepsy

Mastrangelo M. Actual Insights into Treatable Inborn Errors of Metabolism Causing Epilepsy. J Pediatr Neurosci. 2018 Jan-Mar;13(1):13-23.

Abstract
This review offers an update on a group of inborn errors of metabolism causing severe epilepsy with the onset in pediatric age (but also other neurological manifestations such as developmental delay or movement disorders) with available effective or potentially effective treatments. The main pathogenic and clinical features and general recommendations for the diagnostic and therapeutic workup of the following disorders are discussed: vitamin B6-dependent epilepsies, cerebral folate deficiency, congenital disorders of serine metabolism, biotinidase deficiency, inborn errors of creatine metabolism, molybdenum cofactor deficiency, and glucose transporter 1 deficiency. Available treatments are more effective on epileptic manifestations (with the possibility of complete seizure control) and motor symptoms, whereas the benefits on cognitive outcome are usually minor.


Pearl PL. Amenable Treatable Severe Pediatric Epilepsies. Semin Pediatr Neurol. 2016 May;23(2):158-66.

Abstract
Vitamin-dependent epilepsies and multiple metabolic epilepsies are amenable to treatment that markedly improves the disease course. Knowledge of these amenably treatable severe pediatric epilepsies allows for early identification, testing, and treatment. These disorders present with various phenotypes, including early onset epileptic encephalopathy (refractory neonatal seizures, early myoclonic encephalopathy, and early infantile epileptic encephalopathy), infantile spasms, or mixed generalized seizure types in infancy, childhood, or even adolescence and adulthood. The disorders are presented as vitamin responsive epilepsies such as pyridoxine, pyridoxal-5-phosphate, folinic acid, and biotin; transportopathies like GLUT-1, cerebral folate deficiency, and biotin thiamine responsive disorder; amino and organic acidopathies including serine synthesis defects, creatine synthesis disorders, molybdenum cofactor deficiency, and cobalamin deficiencies; mitochondrial disorders; urea cycle disorders; neurotransmitter defects; and disorders of glucose homeostasis. In each case, targeted intervention directed toward the underlying metabolic pathophysiology affords for the opportunity to significantly effect the outcome and prognosis of an otherwise severe pediatric epilepsy.




No comments:

Post a Comment