Monday, July 27, 2020

SLC6A1 mutation

Amber Freed still remembers the life-changing devastation she felt in the summer of 2018 when she learned her young son Maxwell had been diagnosed with a disease so rare, doctors didn’t even have a name for it.

“Most of us have suffered through what we would call our lowest minute in life, like our deepest, darkest moment,” Freed, 38, tells PEOPLE. “Amplify that by exponentially 1 million times. And that’s what it feels like when your child is diagnosed with a disease that doesn’t have any name.”

Instead of sitting down and accepting the news, however, Freed took it upon herself to “fight like a mother,” raising the millions of dollars needed to fund and create a treatment all on her own, which has now been developed and is awaiting approval from the U.S. Food and Drug Administration.

“If I were doing this for myself, I would have stopped,” she says. “But I’m not doing it for myself, I’m doing it for a perfect little boy named Maxwell Freed, and I can work forever for him.”

Freed and her husband Mark, who are based in Denver, were never happier than in March 2017, when they welcomed twins Maxwell and Riley after two years of IVF treatments. 

But their joy quickly turned to concern four months later as they noticed something was wrong with Maxwell, who wasn’t matching typical milestones — like rolling over or reaching for toys — when his sister Riley was.

Despite having her initial concerns dismissed by doctors, Freed searched long and hard for an answer to her son’s struggles, and in the summer of 2018 learned the devastating diagnosis: Maxwell had SLC6A1, a neurological disease so rare, it was referred to only by its genetic location.

Freed was understandably confused by the diagnosis, which yielded zero results on a Google search and was largely unknown, save for a single article out of Denmark. Doctors couldn’t even answer whether Maxwell would live or not.

 “[They said] ‘We don’t know anything else, but hopefully you can become the expert and educate us,’” Freed recalls. “I realized that if anybody was going to cure this disease, it was going to be [my husband and I], that we had to figure this out on our own.”

With the weight of her son’s future on her shoulders, Freed quit her job as an investment analyst that same day, and soon began courting scientists to help her develop a cure, at times sending them cookies throughout the day via Uber Eats to grab their attention.

One scientist in particular — Dr. Steven Gray of the University of Texas Southwestern Medical Center — was especially tricky to pin down, so Freed hopped on a flight to Washington, D.C. and showed up at a conference she knew he’d be attending.

It was during a four-hour dinner with Gray in D.C. that Freed laid out her situation and the two teamed up, developing a plan to cure Maxwell’s disease with a carefully researched gene replacement therapy for which they would create a clinical trial themselves.

Gray warned that the process would be not only time-consuming, but costly, and that Freed should be prepared to spend anywhere between $4 and 7 million to make it work.

 “I ran by the belief that if money can solve a problem, then it’s not a problem,” she says. “I just know me as a person and I was never going to be able to live with myself had I not tried. So I said, ‘I’m all in.’”

In no time at all, Freed strapped on her fundraising boots and by the end of 2019, had raised $2 million through crowdfunding — mainly through a GoFundMe — which allowed her to fund the clinical trial and greatly expand her team.

A major breakthrough came late last year when she and her team of scientists got their hands on Chinese mice with genetics that mirrored Maxwell’s just before Christmas. Though the mice typically cost between $50,000 and $75,000 each, Freed’s tenacity paid off once again, as the scientists agreed to give her the mice for free after she got in touch.

“We’ve been able to test the gene replacement therapy in mice now, and test to make sure it’s safe,” she says. “And I think we all feel very strongly that a gene replacement therapy is safe and that we will be able to advance.”

The treatment is simple: those with the disease receive a two-hour spinal tap, where the new gene is introduced to the body through a virus that does not make humans sick. The virus then travels up through the spinal fluid into the brain, then attacks bad copies of the DNA and stacks good, working copies of the DNA to alter it permanently.

While the progress has been a huge morale booster for Freed and her family, coronavirus and the subsequent shutdown of academic labs across the country have produced major setbacks — a serious problem considering that when it comes to finding a cure for Maxwell, time is of the essence.

For the now-3-year-old Maxwell, the therapy needs to be administered before his disease develops into a debilitating form of epilepsy that could lead to irreversible brain damage – something his mom calls “a death sentence.” The epilepsy typically begins between the ages of 3 and 4.

“There’s labs that are open in Europe we can work with. We have other ways of making this happen this year,” Freed says. “We just need to raise more money.”

The gene replacement therapy must be approved by the FDA before it can be used on Maxwell – and even if it is approved, Freed says she still needs to raise another $2 million to actually make the drug and pay for the clinical trial.

Still, it's all worth it for the little boy she calls "the most loving child in the entire world."

“What we went through is just so horrifying and I never want this to happen to another family,” she says. “My dream is that in five years, this gene is on a newborn testing panel and doctors can come in and say to you, ‘This beautiful little baby you just had has been diagnosed with this horrible, rare disease, but they are going to have gene replacement therapy before you leave the hospital. And this is a once-and-done procedure and your baby will live a perfectly normal life. This is just a chapter in your book.'”

Courtesy of my daughter

1 comment:

  1. Johannesen KM, Gardella E, Linnankivi T, et al. Defining the phenotypic spectrum of SLC6A1 mutations. Epilepsia. 2018;59(2):389-402. doi:10.1111/epi.13986


    Objective: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients.

    Methods: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects.

    Results: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg).

    Significance: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.