Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Dueñas B, O'Callaghan M, Pineda M, Garcia-Cazorla A, Oferil JC, Montoya J, Ruiz-Pesini E, Emperador S, Meznaric M, Campderros L, Kalko SG, Villarroya F, Artuch R, Jimenez-Mallebrera C. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PLoS One. 2016 Feb 11;11(2):e0148709. doi: 10.1371/journal.pone.0148709. Erratum in: PLoS One. 2016;11(5):e0155172. PMID: 26867126; PMCID: PMC4750949.
Abstract
Background: We previously described increased levels of growth and differentiation factor 15 (GDF-15) in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21). To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.
Methods: We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA.
Results: Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM) relative to healthy (350, 21) and myopathic (350, 32) controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4%) and 92.3% (81.5%-97.9%), respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated.
Conclusions: Our data indicate that GDF-15 is a valuable
serum quantitative biomarker for the diagnosis of mitochondrial diseases in
children and that measurement of both GDF-15 and FGF-21 improves the disease
detection ability of either factor separately. Finally, we demonstrate for the
first time that GDF-15 is produced by skeletal muscle cells in response to
mitochondrial dysfunction and that its levels correlate in vitro with FGF-21
levels.
No comments:
Post a Comment