Sunday, August 22, 2021

SELENON (SEPN1)-related myopathy

Inspired by a patient

Villar-Quiles RN, von der Hagen M, Métay C, Gonzalez V, Donkervoort S, Bertini E, Castiglioni C, Chaigne D, Colomer J, Cuadrado ML, de Visser M, Desguerre I, Eymard B, Goemans N, Kaindl A, Lagrue E, Lütschg J, Malfatti E, Mayer M, Merlini L, Orlikowski D, Reuner U, Salih MA, Schlotter-Weigel B, Stoetter M, Straub V, Topaloglu H, Urtizberea JA, van der Kooi A, Wilichowski E, Romero NB, Fardeau M, Bönnemann CG, Estournet B, Richard P, Quijano-Roy S, Schara U, Ferreiro A. The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: A case series. Neurology. 2020 Sep 15;95(11):e1512-e1527. doi: 10.1212/WNL.0000000000010327. Epub 2020 Aug 13. PMID: 32796131; PMCID: PMC7713742.


Objective: To clarify the prevalence, long-term natural history, and severity determinants of SEPN1-related myopathy (SEPN1-RM), we analyzed a large international case series.

Methods: Retrospective clinical, histologic, and genetic analysis of 132 pediatric and adult patients (2-58 years) followed up for several decades.

Results: The clinical phenotype was marked by severe axial muscle weakness, spinal rigidity, and scoliosis (86.1%, from 8.9 ± 4 years), with relatively preserved limb strength and previously unreported ophthalmoparesis in severe cases. All patients developed respiratory failure (from 10.1±6 years), 81.7% requiring ventilation while ambulant. Histopathologically, 79 muscle biopsies showed large variability, partly determined by site of biopsy and age. Multi-minicores were the most common lesion (59.5%), often associated with mild dystrophic features and occasionally with eosinophilic inclusions. Identification of 65 SEPN1 mutations, including 32 novel ones and the first pathogenic copy number variation, unveiled exon 1 as the main mutational hotspot and revealed the first genotype-phenotype correlations, bi-allelic null mutations being significantly associated with disease severity (p = 0.017). SEPN1-RM was more severe and progressive than previously thought, leading to loss of ambulation in 10% of cases, systematic functional decline from the end of the third decade, and reduced lifespan even in mild cases. The main prognosis determinants were scoliosis/respiratory management, SEPN1 mutations, and body mass abnormalities, which correlated with disease severity. We propose a set of severity criteria, provide quantitative data for outcome identification, and establish a need for age stratification.

Conclusion: Our results inform clinical practice, improving diagnosis and management, and represent a major breakthrough for clinical trial readiness in this not so rare disease.

Bouman K, Groothuis JT, Doorduin J, van Alfen N, Udink Ten Cate FEA, van den Heuvel FMA, Nijveldt R, van Tilburg WCM, Buckens SCFM, Dittrich ATM, Draaisma JMT, Janssen MCH, Kamsteeg EJ, van Kleef ESB, Koene S, Smeitink JAM, Küsters B, van Tienen FHJ, Smeets HJM, van Engelen BGM, Erasmus CE, Voermans NC. Natural history, outcome measures and trial readiness in LAMA2-related muscular dystrophy and SELENON-related myopathy in children and adults: protocol of the LAST STRONG study. BMC Neurol. 2021 Aug 12;21(1):313. doi: 10.1186/s12883-021-02336-z. PMID: 34384384; PMCID: PMC8357962.


Background: SELENON (SEPN1)-related myopathy (SELENON-RM) is a rare congenital myopathy characterized by slowly progressive proximal muscle weakness, early onset spine rigidity and respiratory insufficiency. A muscular dystrophy caused by mutations in the LAMA2 gene (LAMA2-related muscular dystrophy, LAMA2-MD) has a similar clinical phenotype, with either a severe, early-onset due to complete Laminin subunit α2 deficiency (merosin-deficient congenital muscular dystrophy type 1A (MDC1A)), or a mild, childhood- or adult-onset due to partial Laminin subunit α2 deficiency. For both muscle diseases, no curative treatment options exist, yet promising preclinical studies are ongoing. Currently, there is a paucity on natural history data and appropriate clinical and functional outcome measures are needed to reach trial readiness.

Methods: LAST STRONG is a natural history study in Dutch-speaking patients of all ages diagnosed with SELENON-RM or LAMA2-MD, starting August 2020. Patients have four visits at our hospital over a period of 1.5 year. At all visits, they undergo standardized neurological examination, hand-held dynamometry (age ≥ 5 years), functional measurements, questionnaires (patient report and/or parent proxy; age ≥ 2 years), muscle ultrasound including diaphragm, pulmonary function tests (spirometry, maximal inspiratory and expiratory pressure, sniff nasal inspiratory pressure; age ≥ 5 years), and accelerometry for 8 days (age ≥ 2 years); at visit one and three, they undergo cardiac evaluation (electrocardiogram, echocardiography; age ≥ 2 years), spine X-ray (age ≥ 2 years), dual-energy X-ray absorptiometry (DEXA-)scan (age ≥ 2 years) and full body magnetic resonance imaging (MRI) (age ≥ 10 years). All examinations are adapted to the patient's age and functional abilities. Correlation between key parameters within and between subsequent visits will be assessed.

Discussion: Our study will describe the natural history of patients diagnosed with SELENON-RM or LAMA2-MD, enabling us to select relevant clinical and functional outcome measures for reaching clinical trial-readiness. Moreover, our detailed description (deep phenotyping) of the clinical features will optimize clinical management and will establish a well-characterized baseline cohort for prospective follow-up.

Conclusion: Our natural history study is an essential step for reaching trial readiness in SELENON-RM and LAMA2-MD.

Varone E, Pozzer D, Di Modica S, Chernorudskiy A, Nogara L, Baraldo M, Cinquanta M, Fumagalli S, Villar-Quiles RN, De Simoni MG, Blaauw B, Ferreiro A, Zito E. SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Redox Biol. 2019 Jun;24:101176. doi: 10.1016/j.redox.2019.101176. Epub 2019 Mar 23. PMID: 30921636; PMCID: PMC6438913.


Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.

Bachmann C, Noreen F, Voermans NC, Schär PL, Vissing J, Fock JM, Bulk S, Kusters B, Moore SA, Beggs AH, Mathews KD, Meyer M, Genetti CA, Meola G, Cardani R, Mathews E, Jungbluth H, Muntoni F, Zorzato F, Treves S. Aberrant regulation of epigenetic modifiers contributes to the pathogenesis in patients with selenoprotein N-related myopathies. Hum Mutat. 2019 Jul;40(7):962-974. doi: 10.1002/humu.23745. Epub 2019 Apr 1. PMID: 30932294; PMCID: PMC6660981.


Congenital myopathies are early onset, slowly progressive neuromuscular disorders of variable severity. They are genetically and phenotypically heterogeneous and caused by pathogenic variants in several genes. Multi-minicore Disease, one of the more common congenital myopathies, is frequently caused by recessive variants in either SELENON, encoding the endoplasmic reticulum glycoprotein selenoprotein N or RYR1, encoding a protein involved in calcium homeostasis and excitation-contraction coupling. The mechanism by which recessive SELENON variants cause Multiminicore disease (MmD) is unclear. Here, we extensively investigated muscle physiological, biochemical and epigenetic modifications, including DNA methylation, histone modification, and noncoding RNA expression, to understand the pathomechanism of MmD. We identified biochemical changes that are common in patients harboring recessive RYR1 and SELENON variants, including depletion of transcripts encoding proteins involved in skeletal muscle calcium homeostasis, increased levels of Class II histone deacetylases (HDACs) and DNA methyltransferases. CpG methylation analysis of genomic DNA of patients with RYR1 and SELENON variants identified >3,500 common aberrantly methylated genes, many of which are involved in calcium signaling. These results provide the proof of concept for the potential use of drugs targeting HDACs and DNA methyltransferases to treat patients with specific forms of congenital myopathies.




No comments:

Post a Comment