Cortese A, Zhu Y, Rebelo AP, Negri S, Courel S, Abreu L, Bacon CJ, Bai Y, Bis-Brewer DM, Bugiardini E, Buglo E, Danzi MC, Feely SME, Athanasiou-Fragkouli A, Haridy NA; Inherited Neuropathy Consortium; Isasi R, Khan A, Laurà M, Magri S, Pipis M, Pisciotta C, Powell E, Rossor AM, Saveri P, Sowden JE, Tozza S, Vandrovcova J, Dallman J, Grignani E, Marchioni E, Scherer SS, Tang B, Lin Z, Al-Ajmi A, Schüle R, Synofzik M, Maisonobe T, Stojkovic T, Auer-Grumbach M, Abdelhamed MA, Hamed SA, Zhang R, Manganelli F, Santoro L, Taroni F, Pareyson D, Houlden H, Herrmann DN, Reilly MM, Shy ME, Zhai RG, Zuchner S. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020 May;52(5):473-481. doi: 10.1038/s41588-020-0615-4. Epub 2020 May 4. Erratum in: Nat Genet. 2020 Jun;52(6):640. PMID: 32367058; PMCID: PMC8353599.
Erratum in Author Correction:
Abstract
Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes.