Tuesday, December 20, 2022

NPRL3 mutations

Inspired by a patient

Korenke GC, Eggert M, Thiele H, Nürnberg P, Sander T, Steinlein OK. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3. Epilepsia. 2016 Mar;57(3):e60-3. doi: 10.1111/epi.13307. Epub 2016 Jan 20. PMID: 26786403.

Abstract

Mutations in NPRL3, one of three genes that encode proteins of the mTORC1-regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel- or DEPDC5-associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms.

Weckhuysen S, Marsan E, Lambrecq V, Marchal C, Morin-Brureau M, An-Gourfinkel I, Baulac M, Fohlen M, Kallay Zetchi C, Seeck M, de la Grange P, Dermaut B, Meurs A, Thomas P, Chassoux F, Leguern E, Picard F, Baulac S. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia. 2016 Jun;57(6):994-1003. doi: 10.1111/epi.13391. Epub 2016 May 13. PMID: 27173016.

Abstract

Objective: The discovery of mutations in DEPDC5 in familial focal epilepsies has introduced a novel pathomechanism to a field so far dominated by ion channelopathies. DEPDC5 is part of a complex named GAP activity toward RAGs (GATOR) complex 1 (GATOR1), together with the proteins NPRL2 and NPRL3, and acts to inhibit the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway. GATOR1 is in turn inhibited by the GATOR2 complex. The mTORC1 pathway is a major signaling cascade regulating cell growth, proliferation, and migration. We aimed to study the contribution of GATOR complex genes to the etiology of focal epilepsies and to describe the associated phenotypical spectrum.

Methods: We performed targeted sequencing of the genes encoding the components of the GATOR1 (DEPDC5, NPRL2, and NPRL3) and GATOR2 (MIOS, SEC13, SEH1L, WDR24, and WDR59) complex in 93 European probands with focal epilepsy with or without focal cortical dysplasia. Phospho-S6 immunoreactivity was used as evidence of mTORC1 pathway activation in resected brain tissue of patients carrying pathogenic variants.

Results: We identified four pathogenic variants in DEPDC5, two in NPRL2, and one in NPRL3. We showed hyperactivation of the mTORC1 pathway in brain tissue from patients with NPRL2 and NPRL3 mutations. Collectively, inactivating mutations in GATOR1 complex genes explained 11% of cases of focal epilepsy, whereas no pathogenic mutations were found in GATOR2 complex genes. GATOR1-related focal epilepsies differ clinically from focal epilepsies due to mutations in ion channel genes by their association with focal cortical dysplasia and seizures emerging from variable foci, and might confer an increased risk of sudden unexplained death in epilepsy (SUDEP).

Significance: GATOR1 complex gene mutations leading to mTORC1 pathway upregulation is an important cause of focal epilepsy with cortical malformations and represents a potential target for novel therapeutic approaches.

Baldassari S, Picard F, Verbeek NE, van Kempen M, Brilstra EH, Lesca G, Conti V, Guerrini R, Bisulli F, Licchetta L, Pippucci T, Tinuper P, Hirsch E, de Saint Martin A, Chelly J, Rudolf G, Chipaux M, Ferrand-Sorbets S, Dorfmüller G, Sisodiya S, Balestrini S, Schoeler N, Hernandez-Hernandez L, Krithika S, Oegema R, Hagebeuk E, Gunning B, Deckers C, Berghuis B, Wegner I, Niks E, Jansen FE, Braun K, de Jong D, Rubboli G, Talvik I, Sander V, Uldall P, Jacquemont ML, Nava C, Leguern E, Julia S, Gambardella A, d'Orsi G, Crichiutti G, Faivre L, Darmency V, Benova B, Krsek P, Biraben A, Lebre AS, Jennesson M, Sattar S, Marchal C, Nordli DR Jr, Lindstrom K, Striano P, Lomax LB, Kiss C, Bartolomei F, Lepine AF, Schoonjans AS, Stouffs K, Jansen A, Panagiotakaki E, Ricard-Mousnier B, Thevenon J, de Bellescize J, Catenoix H, Dorn T, Zenker M, Müller-Schlüter K, Brandt C, Krey I, Polster T, Wolff M, Balci M, Rostasy K, Achaz G, Zacher P, Becher T, Cloppenborg T, Yuskaitis CJ, Weckhuysen S, Poduri A, Lemke JR, Møller RS, Baulac S. The landscape of epilepsy-related GATOR1 variants. Genet Med. 2019 Feb;21(2):398-408. doi: 10.1038/s41436-018-0060-2. Epub 2018 Aug 10. Erratum in: Genet Med. 2018 Aug 29;: Erratum in: Genet Med. 2018 Sep 27;: PMID: 30093711; PMCID: PMC6292495.

Abstract

Purpose: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.

Results: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign.

Conclusion: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.

No comments:

Post a Comment