Thursday, January 16, 2025

GNB2 mutations

Inspired by a patient

Tan NB, Pagnamenta AT, Ferla MP, Gadian J, Chung BH, Chan MC, Fung JL, Cook E, Guter S, Boschann F, Heinen A, Schallner J, Mignot C, Keren B, Whalen S, Sarret C, Mittag D, Demmer L, Stapleton R, Saida K, Matsumoto N, Miyake N, Sheffer R, Mor-Shaked H, Barnett CP, Byrne AB, Scott HS, Kraus A, Cappuccio G, Brunetti-Pierri N, Iorio R, Di Dato F, Pais LS, Yeung A, Tan TY, Taylor JC, Christodoulou J, White SM. Recurrent de novo missense variants in GNB2 can cause syndromic intellectual disability. J Med Genet. 2022 May;59(5):511-516. doi: 10.1136/jmedgenet-2020-107462. Epub 2021 Jun 28. PMID: 34183358.

Abstract

Purpose: Binding proteins (G-proteins) mediate signalling pathways involved in diverse cellular functions and comprise Gα and Gβγ units. Human diseases have been reported for all five Gβ proteins. A de novo missense variant in GNB2 was recently reported in one individual with developmental delay/intellectual disability (DD/ID) and dysmorphism. We aim to confirm GNB2 as a neurodevelopmental disease gene, and elucidate the GNB2-associated neurodevelopmental phenotype in a patient cohort.

Methods: We discovered a GNB2 variant in the index case via exome sequencing and sought individuals with GNB2 variants via international data-sharing initiatives. In silico modelling of the variants was assessed, along with multiple lines of evidence in keeping with American College of Medical Genetics and Genomics guidelines for interpretation of sequence variants.

Results: We identified 12 unrelated individuals with five de novo missense variants in GNB2, four of which are recurrent: p.(Ala73Thr), p.(Gly77Arg), p.(Lys89Glu) and p.(Lys89Thr). All individuals have DD/ID with variable dysmorphism and extraneurologic features. The variants are located at the universally conserved shared interface with the Gα subunit, which modelling suggests weaken this interaction.

Conclusion: Missense variants in GNB2 cause a congenital neurodevelopmental disorder with variable syndromic features, broadening the spectrum of multisystem phenotypes associated with variants in genes encoding G-proteins.

Fukuda T, Hiraide T, Yamoto K, Nakashima M, Kawai T, Yanagi K, Ogata T, Saitsu H. Exome reports A de novo GNB2 variant associated with global developmental delay, intellectual disability, and dysmorphic features. Eur J Med Genet. 2020 Apr;63(4):103804. doi: 10.1016/j.ejmg.2019.103804. Epub 2019 Nov 4. PMID: 31698099.

Abstract

Heterotrimeric G proteins are composed of α, β, and γ subunits and are involved in integrating signals between receptors and effector proteins. The 5 human Gβ proteins (encoded by GNB1, GNB2, GNB3, GNB4, and GNB5) are highly similar. Variants in GNB1 were identified as a genetic cause of developmental delay. De novo variant in GNB2 has recently been reported as a cause of sinus node dysfunction and atrioventricular block but not as a cause of developmental delay. Trio-based whole-exome sequencing was performed on an individual with global developmental delay, muscle hypotonia, multiple congenital joint contractures and dysmorphism such as brachycephalus, thick eyebrows, thin upper lip, micrognathia, prominent chin, and bilateral tapered fingers. We identified a de novo GNB2 variant c.229G>A, p.(Gly77Arg). Notably, pathogenic substitutions of the homologous Gly77 residue including an identical variant (p.Gly77Arg, p.Gly77Val, p.Gly77Ser, p.Gly77Ala) of GNB1, a paralog of GNB2, was reported in individuals with global developmental delay and hypotonia. Clinical features of our case overlap with those of GNB1 variants. Our study suggests that a GNB2 variant may be associated with syndromic global developmental delay.

Lansdon LA, Fleming EA, Viso FD, Sullivan BR, Saunders CJ. Second patient with GNB2-related neurodevelopmental disease: Further evidence for a gene-disease association. Eur J Med Genet. 2021 Jul;64(7):104243. doi: 10.1016/j.ejmg.2021.104243. Epub 2021 May 7. PMID: 33971351.

Abstract

G-proteins are ubiquitously expressed heterotrimeric proteins consisting of α, β and γ subunits and mediate G-protein coupled receptor signalling cascades. The β subunit is encoded by one of five highly similar paralogs (GNB1-GNB5, accordingly). The developmental importance of G-proteins is highlighted by the clinical relevance of variants in genes such as GNB1, which cause severe neurodevelopmental disease (NDD). Recently the candidacy of GNB2 was raised in association with NDD in an individual with a de novo variant affecting a codon conserved across paralogs and recurrently mutated in GNB1-related disease, c.229G>A p.(Gly77Arg), in association with global developmental delay, intellectual disability and dysmorphic features. Here, we report a patient with strikingly similar facial features and NDD in association with a de novo GNB2 variant affecting the same codon, c.229G>T p.(Gly77Trp). In addition, this individual has epilepsy and overgrowth. Our report is the second to implicate a de novo GNB2 variant with a severe yet variable NDD.

No comments:

Post a Comment