Abstract
Cerebellofaciodental syndrome characterized with dysmorphic features, intellectual disability, and brain anomalies. Now its clinical spectrum expanded more manifestations including bilateral sensorineural hearing impairment and inner ear malformation. Here, we report a 14-month-old boy with global developmental delay and hearing disorder. Whole exome sequencing (WES) revealed the compound heterozygous variants [NM_001519.4: c.652 T > G (p.W218G); c.915 + 1G > T] in the BRF1 gene which inherited from his parents, respectively. The MRI results showed hypoplastic cerebellar vermis, enlarged cisterna magna, and prominent fourth ventricle, the rehabilitation therapy failed to improve the symptoms for our patient. Our finding expands the genetic spectrum of BRF1 variants, which indicates patients with the developmental delay caused by BRF1 variants require other treatments instead of rehabilitation.
Borck G, Hög F, Dentici ML, Tan PL, Sowada N, Medeira A, Gueneau L, Thiele H, Kousi M, Lepri F, Wenzeck L, Blumenthal I, Radicioni A, Schwarzenberg TL, Mandriani B, Fischetto R, Morris-Rosendahl DJ, Altmüller J, Reymond A, Nürnberg P, Merla G, Dallapiccola B, Katsanis N, Cramer P, Kubisch C. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res. 2015 Feb;25(2):155-66. doi: 10.1101/gr.176925.114. Epub 2015 Jan 5. Erratum in: Genome Res. 2015 Apr;25(4):609. PMID: 25561519; PMCID: PMC4315290.
Abstract
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Valenzuela I, Codina M, Fernández-Álvarez P, Mur P, Valle L, Tizzano EF, Cuscó I. Expanding the phenotype of cerebellar-facial-dental syndrome: Two siblings with a novel variant in BRF1. Am J Med Genet A. 2020 Nov;182(11):2742-2745. doi: 10.1002/ajmg.a.61839. Epub 2020 Sep 8. PMID: 32896090.
Abstract
Cerebellofaciodental syndrome (MIM #616202) is an autosomal recessive condition characterized by intellectual disability, microcephaly, cerebellar hypoplasia, dysmorphic features, and short stature. To date, eight patients carrying biallelic BRF1 variants have been reported. Here, we describe two siblings with congenital microcephaly and corpus callosum hypoplasia, pre and postnatal growth retardation, congenital heart defect and severe global developmental delay. We also detected additional findings not previously reported in this syndrome, including bilateral sensorineural hearing impairment and inner ear malformation. Whole exome sequencing identified a novel homozygous missense variant (c.654G>C, p.[Trp218Cys]) in BRF1, predicted to affect the protein structure. Expression assessment showed extremely low BRF1 protein expression caused by the identified variant, supporting its causal involvement. The description of new patients with cerebellofaciodental syndrome is essential to better delineate the phenotypic and genotypic spectrum of the disease.
Jee YH, Sowada N, Markello TC, Rezvani I, Borck G, Baron J. BRF1 mutations in a family with growth failure, markedly delayed bone age, and central nervous system anomalies. Clin Genet. 2017 May;91(5):739-747. doi: 10.1111/cge.12887. Epub 2016 Dec 12. PMID: 27748960; PMCID: PMC5389939.
Abstract
Linear growth failure can be caused by many different genetic abnormalities. In many cases, the genetic defect affects not only the growth plate, causing short stature but also other organs/tissues causing additional clinical abnormalities. A 10-year old boy was evaluated for impaired postnatal linear growth (height 113.3 cm, -4.6 SDS), a bone age that was delayed by 5 years, dysmorphic facies, cognitive impairment, and central nervous system anomalies. His younger brother, presented only with growth failure at 10 months of age. Exome sequencing identified compound heterozygous variants in the gene encoding RNA polymerase III transcription initiation factor 90 kDa subunit (BRF1) in both affected siblings: a missense mutation (c.875 C > G:p.P292R) and a frameshift mutation (c.551delG:p.C184Sfs). The frameshift mutation is expected to lead to nonsense-mediated mRNA decay (NMD) and/or to protein truncation. Expression of BRF1 with the P292R missense mutation failed to rescue yeast lacking BRF1. The findings confirm a previous report showing that biallelic mutations in BRF1 cause cerebellar-facial-dental syndrome. Our findings also help define the growth phenotype, indicating that the linear growth failure can become clinically evident before the neurological abnormalities and that a severely delayed bone age may serve as a diagnostic clue.
No comments:
Post a Comment