Heyn P, Logan CV, Fluteau A, Challis RC, Auchynnikava T, Martin CA, Marsh JA, Taglini F, Kilanowski F, Parry DA, Cormier-Daire V, Fong CT, Gibson K, Hwa V, Ibáñez L, Robertson SP, Sebastiani G, Rappsilber J, Allshire RC, Reijns MAM, Dauber A, Sproul D, Jackson AP. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat Genet. 2019 Jan;51(1):96-105. doi: 10.1038/s41588-018-0274-x. Epub 2018 Nov 26. PMID: 30478443; PMCID: PMC6520989.
Abstract
DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.
Kim GH, Kim J, Lee J, Jang DH. A novel pathogenic variant of DNMT3A associated with craniosynostosis: a case report of Heyn-Sproul-Jackson syndrome. Front Pediatr. 2023 May 25;11:1165638. doi: 10.3389/fped.2023.1165638. PMID: 37303757; PMCID: PMC10248406.
Abstract
Pathogenic variants of DNMT3A have been implicated in Tatton-Brown-Rahman syndrome, an overgrowth disorder with macrocephaly and intellectual disability. However, there are recent reports of variants in the same gene giving rise to an opposing clinical phenotype presenting with microcephaly, growth failure, and impaired development-named Heyn-Sproul-Jackson syndrome (HESJAS). Here, we present a case of HESJAS caused by a novel pathogenic variant of DNMT3A. A five-year-old girl presented with severe developmental delay. Perinatal and family history were non-contributory. Physical exam showed microcephaly and facial dysmorphic features, and neurodevelopmental assessments revealed profound global developmental delay. Brain magnetic resonance imaging findings were normal; however, brain 3D computed tomography revealed craniosynostosis. Next generation sequencing revealed a novel heterozygous variant in DNMT3A (NM_175629.2: c.1012_1014 + 3del). The patient's parents did not carry the variant. In this report, a novel feature associated with HESJAS (craniosynostosis) is described, along with a more detailed account of clinical manifestations than those in the original report.
No comments:
Post a Comment