Tuesday, January 19, 2016

Self diagnosis (DIY)

So 19-year-old Jill put on her most serious navy pantsuit, again gathered up her papers, and took them to a neurologist in Des Moines. She asked the neurologist to take a look, hoping that she would help her connect with the Italian team and get in the study. But the neurologist would have none of it. “No, you don’t have that,” Jill recalls the neurologist saying sternly. And then she refused even to look at the papers. It might seem rude that a doctor refused just to hear Jill out and glance at the papers, but, at the time, most doctors believed Emery-Dreifuss only occurred in men. Plus, this was a self-diagnosis of an obscure disease coming from a teenager.

So Jill wrote to the Italians herself. She constructed a family tree, noting all the symptoms she saw in her father, two younger brothers and a younger sister, and then she stripped down to her underwear. “I set the timer on my camera and I took pictures of myself,” Jill says, “because I thought, well, if that’s how I identified it, let me send a picture.”

Up to that point, the Italians had only collected four other families to study, so they were thrilled to hear from Jill, and immediately wrote back. From the letter, it seems as though the Italian team thought Jill had access to a lab. Can you send DNA from your entire family? it reads. “If you cannot prepare DNA, just send fresh blood.” And then it gave mailing instructions.

Discouraged by her encounter with the neurologist, Jill figured it would be a dead end to show up at a hospital and ask that her blood be drawn so she could ship it to Italy. So she convinced a nurse friend to smuggle needles and test tubes to her house. They filled them with her family’s blood. At the post office, when Jill declared that her packages contained blood, an employee had to retrieve a big binder that listed what can be shipped to various countries. Fortunately, Italy took blood in the mail.

Today, an entire human genome can be sequenced in a few days. But in the mid-1990s sequencing was a ponderous ordeal. It would be four years before Jill heard back from the Italians...

She was so confident that in her annual trips to the Mayo Clinic, she started taking a pen from her purse and writing “Emery-Dreifuss” on her medical chart. Her mom would get upset: “You cannot change your chart!” I want what I actually have to be listed, Jill would tell her.

Then in 1999, Jill got an email from Italy. She stopped before opening it to let the moment sink in. And then she clicked. She had a mutation on a gene known as LMNA, or, for ease: the lamin gene. So did her father, two brothers, and a sister. So did the other four families in the study with Emery-Dreifuss...

Jill was 25, and a lab director at Johns Hopkins University had heard through the medical grapevine about the young woman who diagnosed her own Emery-Dreifuss. Wanting both a dogged intern and — why not? — a real-life lamin mutant in her lab, the scientist offered Jill a summer internship. Jill’s job was to sift through scientific journals and find any references to diseases that might be caused by a lamin mutation.

Sitting there day after day, reading, as she had freshman year in college in the library, Jill came across an incredibly rare disease. A disorder called partial lipodystrophy. It caused fat on certain parts of the body, particularly the limbs, to disappear, leaving veins and muscles to stand out, as if they’d been shrink-wrapped in skin. Looking at photos of patients with partial lipodystrophy, all Jill could think was that they looked like her family members.

Could Jill have not just one, but two incredibly rare genetic diseases? The odds of having Jill’s Emery-Dreifuss were so rare that the prevalence isn’t even known; certainly more rare than one in a million. The odds of having partial lipodystrophy are probably somewhere between one in one million and one in 15 million. The odds of separately getting both by chance alone? It was one in far more than the number of people who have lived on Earth, ever.

Jill attended a medical conference at Hopkins during her internship, and, as she had with Emery-Dreifuss, she showed photos to doctors and told them she thought she had partial lipodystrophy. Just like before, they assured her it wasn’t the case. They jokingly diagnosed her with something a lot more common: intern syndrome. “Where you have a medical student being introduced to a lot of new diseases,” Jill says, “and they keep thinking they have what they’re reading about.”...

Later that week, Jill’s younger sister Betsy pulled Jill over to the computer to show her a picture.

People often asked Betsy what kind of workout she did, because the muscles in her arms were so well defined. But it wasn’t from the gym. Betsy’s arms had always been defined, and as she grew up, she wanted to know why. Jill told her she might want to look into lipodystrophy, but that doctors had told her years ago that she didn’t have it. Betsy attended a meeting for people with lipodystrophy, and there learned about an Olympic sprinter who was conspicuously missing fat. The picture Betsy showed Jill was, of course, Priscilla Lopes-Schliep...

It was the third time Jill had made a visual lock on something rare. First, it was with her family’s Emery-Dreifuss, then when she thought they had lipodystrophy, and now she thought that she and Priscilla just must have a mutant gene in common because of the exact same pattern of missing fat. But how, then, did Priscilla get a double-helping of muscle while Jill’s muscles were scarcely there?

“This is my kryptonite, but this is her rocket fuel,” Jill says. “We’re like comic book superheros that are just as divergent as can be. I mean, her body has found a way around it somehow.”...

And when Priscilla walked in, Jill’s first thought was “Oh my gosh, it’s like seeing family.”

Priscilla felt the same way. “It really was just a wow moment,” Priscilla says. “Like, do I know you?” The two women started flexing for one another. Priscilla’s muscles many times larger, but with the same definition exposed by a lack of fat. They even retreated to a hallway in the hotel to compare body parts. “There is something real here,” Priscilla recalls thinking. “Let’s research. Let’s find out. Because how could the gene do this to you and this to me? That was what my question was. How?”

Jill offered Priscilla a cashier’s check, money that had been raised for research in a memorial fund after her father’s death. Jill hoped Priscilla would take it and use it to pay for a genetic test. And Priscilla agreed.

It took a year to find a doctor to test Priscilla. She visited several clinics. Some told her they just didn’t do that test. Others said they weren’t sure how to interpret the results, so they felt it wouldn’t be responsible to do the test.

Finally, Jill went to a medical conference and approached the foremost expert in lipodystrophy, Dr. Abhimanyu Garg, who runs a lab at the University of Texas Southwestern Medical Center. He agreed to do both genetic testing and a lipodystrophy evaluation.

The results showed that Jill had been right. She and Priscilla do have a genetic connection. Not only do she and Priscilla both have lipodystrophy — the disease Jill had been told to cast aside back when she was an intern at Johns Hopkins — but they have the exact same subcategory of partial lipodystrophy, known as Dunnigan-type.

And Priscilla did indeed have a mutation on her lamin gene. Both women have a typo on the same one of their 23,000 genes. Priscilla’s is not the exact same “single-letter” typo that Jill has, though; it’s a neighbor typo. That splinter of distance in typo location seems to makes the difference. It’s why Jill has Emery-Dreifuss and Priscilla has fantastic musculature. (That said, there are people with Priscilla’s exact genetic typo who have both fat and muscle wasting.)...

Despite her monstrous training regimen, Garg informed Priscilla that, due to her unmonitored lipodystrophy, she had three times the normal level of triglycerides, or fat in her blood...

In other words, Jill had once again helped steer someone away from a medical disaster. She had prolonged her dad’s life, and now — once again with that cutting-edge medical tool Google Images — she caused the most intense medical intervention that a professional athlete had ever had. Priscilla called Jill to tell her. “I was like, ‘You pretty much just saved me from having to go to the hospital!’” Priscilla says. “Dr. Garg told me I have the gene and my numbers are out of the roof.”

Even Garg was startled by what Jill had done. “I can understand a patient can learn more about their disease,” he says. “But to reach out to someone else, and figure out their problem also. It is a remarkable feat there.”

 
 
 
Courtesy of a colleague

7 comments:

  1. Dr. Garg, who has studied lipodystrophy for 30 years, says that Jill and Priscilla are the most extreme cases of muscle development he has ever seen in lipodystrophy patients — on opposite ends of the spectrum, of course. What might be causing that?

    Jill and Priscilla don’t have the exact same typo, or “point mutation.” Because of that, they have one condition precisely in common — Dunnigan-type partial lipodystrophy — and another that is divergent as can be — their muscles. But the mechanism behind their difference is an important mystery. It might not surprise you by now that, in search of an answer, Jill hit the scientific journals.

    She alighted on the work of a French molecular biologist named Etienne Lefai. He does extremely technical work on a protein with the less than mellifluous name: SREBP1. SREBP1 has long been known to manage fat storage. After a meal, SREBP1 is helping each of your cells decide whether to use the fat that just arrived for fuel or store it for later.

    Lefai’s team found, in animals, that a buildup of SREBP1 in the cell can lead either to extreme muscle atrophy or extreme muscle growth. And that was something Jill was interested in. She sent Lefai a two-line email with a question about his work. He thought it was from a scientist or Ph.D. student and responded.

    Soon, Jill told Lefai about her own history, and suggested that it is possible that he discovered the actual biological mechanism that makes her and Priscilla so different — SREBP1 interacting with lamin.

    “Okay, that triggers a kind of reflection from my side saying ‘That’s a really good question. That’s a really, really good question!’” Lefai says, in a thick French accent. “Because I had no idea of what I can do with genetic diseases before she contacted me. Now I have changed the path of my team.”

    Since Jill first contacted him, he has learned that lamin proteins — which the body creates using instructions from the lamin gene — can interact with SREBP1. Now Lefai is working to figure out whether a lamin gene mutation alters the ability of lamin proteins to regulate how SREBP1 works, causing simultaneous loss of muscle and fat. It’s possible, though certainly not assured, that his work could ultimately lead to new treatments.

    Given how technical his work is, I asked Lefai if he had ever had someone from outside the science community influence his research. “In my life, no,” he says. “People from outside coming and giving me hope? New ideas? I have no other example of this kind of thing. You know, maybe happen once in a scientific life.”

    It is the dream of many rare disease patients to have a scientist orient his research agenda around them.

    The first time Jill and I spoke, she told me that she knew there would be no treatment breakthrough in her lifetime. (Although, I’m not so sure.) But she doesn’t want what she learned to be lost, and hopes that maybe she’ll have made a small contribution to some therapy that’s developed for some other generation. She told me recently that she has proved her point, and she’s thrilled that she was able to help Priscilla improve her own health.

    The two women have stayed in touch. They talk about their kids. Priscilla is quite sure her daughters got her mutation. She can feel the difference between other kids and her own when she lifts them. Her girls are dense, with solid muscles.

    https://www.propublica.org/article/muscular-dystrophy-patient-olympic-medalist-same-genetic-mutation

    ReplyDelete
  2. This time, Jill believed the experts, so she dropped it. One rare disease was enough. She went back to reading about Emery-Dreifuss. But pretty soon she dropped that too. She was learning more about all the cardiac problems — the average lifespan of subjects in case studies she read was around 40 — and the stress landed her in the hospital. “I had two panic attacks that were brought on by the stress of reading all these things,” Jill says. “And I went to a counselor for a while and worked with my cardiologist. And we decided it was just too much information. It wasn’t healthy.”

    So she stopped reading scientific literature. Cold turkey. No more medical research. No more DIY diagnosis. She started working as a writing instructor at community colleges, and taught adult education at night.

    She started dating, and met Jeremy, the man she would marry. And though there was a 50-50 chance she would pass down her Emery-Dreifuss gene mutation, they decided to have a child. Jill’s pregnancy was normal, and her son Martin did not inherit the mutation. But after he was born, Jill’s physical problems accelerated...

    By Martin’s first birthday, she could hardly walk. One day, he was calling that he wanted mac and cheese. It was just a few feet to the kitchen. “I had six steps to take,” Jill says, “and I realized this is it. This is the last six steps I’m going to take.” After that, Jill could not get up again.

    Her father was losing his ability to walk at exactly the same time, so father and daughter transitioned to life in motorized scooters. Jill remembers seeing her father discouraged for the first time in his life. After one visit with a neurologist, he told her, “I feel like I go there just to be weighed.”

    Five years later, Jill’s father told Jill’s mother that he was tired, so he moved from his scooter to his favorite chair. He bowed his head, as if taking a nap, but he never woke up. His heart had finally failed at the age of 63.

    https://www.propublica.org/article/muscular-dystrophy-patient-olympic-medalist-same-genetic-mutation

    ReplyDelete
  3. “She pulls up pictures of this extremely muscular athlete,” Jill says. “And I just took one look at it, and just…what?! We don’t have that. What are you talking about?”

    But a week later, with the funeral out of the way, Jill got curious. She started Googling. Not just pictures of Priscilla running, but photos of her at home, just hanging around, or feeding her baby daughter. She saw the same prominent veins, the same fall of clothing over shoulders and arms missing fat. The same visible divisions between muscles in the hips and butt. “It was just unmistakable,” Jill says. “It’s like a computer that can analyze a photo and get a match and be 100 percent sure that’s the same shoulder, that’s the same upper arm. I see the same veins, I see them branching this way. You just know and it’s hard to convey, how could you just know. But I knew we were cut from the same cloth. A very rare cloth.”

    Still, when Priscilla would walk around at track meets, she’d hear people commenting, she says, “Oh look at her glutes, look at her arms, shoulders, calves. Oh look, look, look!” A picture of a male bodybuilder’s face was pasted onto a photo of Priscilla’s body — while she was straining to the finish line, attempting to make the Olympic final — and posted online. “That was pretty messed up,” Priscilla says. “I was really pissed off about that…A lot of people honestly believed I was taking steroids.”

    Priscilla thinks that because of her physique, she was targeted for more than the normal amount of drug testing. (Targeted testing is a standard part of anti-doping.) She was tested right after having her daughter, Natalia. At the World Championships in Berlin in 2009, she was tested just minutes before winning a silver medal. There’s not even supposed to be any drug testing that close to the race.

    The following month, at a meet in Greece, someone stole her training journal out of her bag. It was at the very bottom, underneath expensive workout clothes and shoes, none of which were taken. Why steal a training journal? We’ll never know. But I’ve covered a lot of doping stories, and I’m convinced someone thought the journal contained her steroid regimen...

    Dr. Garg called Priscilla immediately to give her the news. He caught her at the mall, shopping with her kids. “I was just dreaming about going out and getting a juicy burger and fries,” Priscilla says, “and Dr. Garg calls me and says, ‘I have your results.’” Priscilla asked if she could call him back later, after lunch. He said that she could not. “He’s like, ‘You’re only allowed to have salad. You’re on track for a [pancreatitis] attack.’ I was like, ‘Say what?’”

    https://www.propublica.org/article/muscular-dystrophy-patient-olympic-medalist-same-genetic-mutation

    ReplyDelete
  4. Bonne G, Di Barletta MR, Varnous S, Bécane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999 Mar;21(3):285-8.

    Abstract

    Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and a cardiomyopathy with conduction blocks which is life-threatening. Two modes of inheritance exist, X-linked (OMIM 310300) and autosomal dominant (EDMD-AD; OMIM 181350). EDMD-AD is clinically identical to the X-linked forms of the disease. Mutations in EMD, the gene encoding emerin, are responsible for the X-linked form. We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus. This region contains the lamin A/C gene (LMNA), a candidate gene encoding two proteins of the nuclear lamina, lamins A and C, produced by alternative splicing. We identified four mutations in LMNA that co-segregate with the disease phenotype in the five families: one nonsense mutation and three missense mutations. These results are the first identification of mutations in a component of the nuclear lamina as a cause of inherited muscle disorder. Together with mutations in EMD (refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders.

    From the manuscript: Acknowledgments
    We thank the family members for participation; J. Dopf for the analysis of family EMD4; J. Beckmann for collaboration with GénéthonII; D. Recan for DNA samples of family EMD1; M. Petit and H. Collin for their genotyping and immunohistochemical analysis; and J.-C. Courvalin for lamin A/C antibody and for critically reading the manuscript. This work was supported by INSERM, the Association Française contre les Myopathies (grant 6100) and the Telethon Italy (grant E297). We also thank the European Neuromuscular Center (ENMC) for its continuous support.

    ReplyDelete
  5. Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, Millaire A, Lascols O, Vermersch P, Wemeau JL, Capeau J, Vigouroux C. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab. 2004 Nov;89(11):5337-46.

    Abstract


    Diseases due to mutations in the lamin A/C gene (LMNA) are highly heterogeneous, including neuromuscular and cardiac dystrophies, lipodystrophies, and premature ageing syndromes. In this study we characterized the neuromuscular and cardiac phenotypes of patients bearing the heterozygous LMNA R482W mutation, which is the most frequent genotype associated with the familial partial lipodystrophy of the Dunnigan type (FPLD). Fourteen patients from two unrelated families, including 10 affected subjects, were studied. The two probands had been referred for lipoatrophy and/or diabetes. Lipodystrophy, exclusively observed in LMNA-mutated patients, was of variable severity and limited to postpubertal subjects. Lipodystrophy and metabolic disturbances were more severe in women, even if an enlarged neck was a constant finding. The severity of hypertriglyceridemia and hirsutism in females was related to that of insulin resistance. Clinical muscular alterations were only present in LMNA-mutated patients. Clinical and histological examination showed an invalidating, progressive limb-girdle muscular dystrophy in a 42-yr-old woman that had been present since childhood, associated with a typical postpubertal FPLD phenotype. Six of eight adults presented the association of calf hypertrophy, perihumeral muscular atrophy, and a rolling gait due to proximal lower limb weakness. Muscular histology was compatible with muscular dystrophy in one of them and/or showed a nonspecific excess of lipid droplets (in three cases). Immunostaining of lamin A/C was normal in the six muscular biopsies. Surprisingly, calpain 3 expression was undetectable in the patient with the severe limb-girdle muscular dystrophy, although the gene did not reveal any molecular alterations. At the cardiac level, cardiac septal hypertrophy and atherosclerosis were frequent in FPLD patients. In addition, a 24-yr-old FPLD patient had a symptomatic second degree atrioventricular block. In conclusion, we showed that most lipodystrophic patients affected by the FPLD-linked LMNA R482W mutation show muscular and cardiac abnormalities. The occurrence and severity of the myopathic and lipoatrophic phenotypes varied and were not related. The muscular phenotype was evocative of limb girdle muscular dystrophy. Cardiac hypertrophy and advanced atherosclerosis were frequent. FPLD patients should receive careful neuromuscular and cardiac examination whatever the underlying LMNA mutation.

    ReplyDelete
  6. Last year, the “real Benjamin Button” died after a battle with a rare genetic disorder known as progeria. The 17-year-old was diagnosed with the disease at only 22 months old, and though he died while he was still in his teens, he appeared to be decades older than he really was — possibly well into his 80s, even...

    In a new study published in Genes & Development, a group of researchers at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna examined how progeria develops. They pinpointed and described a previously unknown mechanism that offers clues to its development — and also potential new treatment pathways.

    The researchers focused primarily on how progerin causes the disease. The protein is a mutant version of lamin A, which is essential for the nucleus to function in cells. And in progeria cells, there is less of a protein known as LAP2-alpha — which interacts with lamin A — than healthy cells.

    “A few years ago, we and others found that progeria cells have much less LAP2-alpha than normal cells,” Roland Foisner, deputy director of the Department of Medical Biochemistry at the Medical University of Vienna, said in the press release. “LAP2-alpha is a protein that interacts with lamin A to regulate cell proliferation, the process that produces new cells. Interestingly, LAP2-alpha levels also decrease during normal aging.”

    In the study, the researchers found that if they introduced LAP2-alpha into the lacking progeria cells, they could prevent the early cellular aging process.
    In a new study published in Genes & Development, a group of researchers at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna examined how progeria develops. They pinpointed and described a previously unknown mechanism that offers clues to its development — and also potential new treatment pathways.

    The researchers focused primarily on how progerin causes the disease. The protein is a mutant version of lamin A, which is essential for the nucleus to function in cells. And in progeria cells, there is less of a protein known as LAP2-alpha — which interacts with lamin A — than healthy cells.

    “A few years ago, we and others found that progeria cells have much less LAP2-alpha than normal cells,” Roland Foisner, deputy director of the Department of Medical Biochemistry at the Medical University of Vienna, said in the press release. “LAP2-alpha is a protein that interacts with lamin A to regulate cell proliferation, the process that produces new cells. Interestingly, LAP2-alpha levels also decrease during normal aging.”

    In the study, the researchers found that if they introduced LAP2-alpha into the lacking progeria cells, they could prevent the early cellular aging process.
    “Cells are surrounded by material that structurally supports them,” Sandra Vidak, a Ph.D. student who also worked on the study, said in the press release. “It is called extracellular matrix or in short ECM. It was reported before that progerin negatively affects the production of ECM proteins, leading to a disrupted cellular environment and slower proliferation. Now we connected this to the low LAP2-alpha levels and when we reintroduced LAP2-alpha into progeria cells they again produced normal ECM and proliferated normally and didn’t enter the cellular aging process.”

    Currently, there’s no cure for progeria. There is a treatment known as Lonafarnib, which is a form of farnesyltransferase inhibitor (FTI) that was originally used to treat cancer, but research has shown that it can slow the symptoms of progeria and extend patients’ lifetime by over a year.

    http://www.medicaldaily.com/benjamin-button-disease-reason-kids-progeria-experience-premature-aging-look-10-times-356182

    ReplyDelete
  7. Vidak S, Kubben N, Dechat T, Foisner R. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes Dev. 2015 Oct 1;29(19):2022-36.

    Abstract


    Lamina-associated polypeptide 2α (LAP2α) localizes throughout the nucleoplasm and interacts with the fraction of lamins A/C that is not associated with the peripheral nuclear lamina. The LAP2α-lamin A/C complex negatively affects cell proliferation. Lamins A/C are encoded by LMNA, a single heterozygous mutation of which causes Hutchinson-Gilford progeria syndrome (HGPS). This mutation generates the lamin A variant progerin, which we show here leads to loss of LAP2α and nucleoplasmic lamins A/C, impaired proliferation, and down-regulation of extracellular matrix components. Surprisingly, contrary to wild-type cells, ectopic expression of LAP2α in cells expressing progerin restores proliferation and extracellular matrix expression but not the levels of nucleoplasmic lamins A/C. We conclude that, in addition to its cell cycle-inhibiting function with lamins A/C, LAP2α can also regulate extracellular matrix components independently of lamins A/C, which may help explain the proliferation-promoting function of LAP2α in cells expressing progerin.

    ReplyDelete