Saturday, April 9, 2016

ACTA1 mutations

Nowak KJ, Ravenscroft G, Laing NG. Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol. 2013 Jan;125(1):19-32.

Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca(2+) is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.

Goebel HH, Laing NG. Actinopathies and myosinopathies. Brain Pathol. 2009
Jul;19(3):516-22.

Abstract
The currently recognized two forms of "anabolic" protein aggregate myopathies, that is, defects in development, maturation and final formation of respective actin and myosin filaments encompass actinopathies and myosinopathies. The former are marked by mutations in the ACTA1 gene, largely of the de novo type. Aggregates of actin filaments are deposited within muscle fibers. Early clinical onset is often congenital; most patients run a rapidly progressive course and die during their first 2 years of life. Myosinopathies or myosin storage myopathies also commence in childhood, but show a much more protracted course owing to mutations in the myosin heavy chain gene MYH7. Protein aggregation consists of granular material in muscle fibers and few, if any, filaments.

Feng JJ, Marston S. Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord. 2009 Jan;19(1):6-16.

Abstract

Mutations in the skeletal muscle actin gene, ACTA1 are responsible for up to 20% of congenital myopathies with a variety of pathologies that includes nemaline myopathy, intranuclear rod myopathy, actin myopathy and congenital fibre type disproportion. In their review of 2003, Sparrow et al. considered how these actin mutations might affect muscle function at the molecular level and thus cause the disease. Since then several laboratories have taken up the challenge of investigating genotype-phenotype relationships experimentally. The objective of this review is to assess the current state of our understanding of the molecular mechanisms of skeletal myopathies and the prospects for future therapies based on this knowledge. Thirty congenital myopathy-causing ACTA1 mutations have been studied using a range of biochemical and in vitro approaches. They showed diverse molecular defects, and there is no obvious pattern seen in mutations resulting in the same histopathology.

Inspired by a patient.

No comments:

Post a Comment