Monday, January 27, 2020

Inborn errors of the glycosylphosphatidylinositiol anchor biosynthetic pathwa

McInerney-Leo AM, Harris JE, Gattas M, Peach EE, Sinnott S, Dudding-Byth T, Rajagopalan S, Barnett CP, Anderson LK, Wheeler L, Brown MA, Leo PJ, Wicking C, Duncan EL. Fryns Syndrome Associated with Recessive Mutations in PIGN in two Separate Families. Hum Mutat. 2016 Jul;37(7):695-702.

Fryns syndrome is an autosomal recessive condition characterized by congenital diaphragmatic hernia (CDH), dysmorphic facial features, distal digital hypoplasia, and other associated malformations, and is the most common syndromic form of CDH. No gene has been associated with this condition. Whole-exome sequence data from two siblings and three unrelated individuals with Fryns syndrome were filtered for rare, good quality, coding mutations fitting a recessive inheritance model. Compound heterozygous mutations in PIGN were identified in the siblings, with appropriate parental segregation: a novel STOP mutation (c.1966C>T: p.Glu656X) and a rare (minor allele frequency <0.001) donor splice site mutation (c.1674+1G>C) causing skipping of exon 18 and utilization of a cryptic acceptor site in exon 19. A further novel homozygous STOP mutation in PIGN (c.694A>T: p.Lys232X) was detected in one unrelated case. All three variants affected highly conserved bases. The two remaining cases were negative for PIGN mutations. Mutations in PIGN have been reported in cases with multiple congenital anomalies, including one case with syndromic CDH. Fryns syndrome can be caused by recessive mutations in PIGN. Whether PIGN affects other syndromic and non-syndromic forms of CDH warrants investigation.

Alessandri JL, Gordon CT, Jacquemont ML, Gruchy N, Ajeawung NF, Benoist G, Oufadem M, Chebil A, Duffourd Y, Dumont C, Gérard M, Kuentz P, Jouan T, Filippini F, Nguyen TTM, Alibeu O, Bole-Feysot C, Nitschké P, Omarjee A, Ramful D, Randrianaivo H, Doray B, Faivre L, Amiel J, Campeau PM, Thevenon J. Recessive loss of function PIGN alleles, including an intragenic deletion with founder effect in La Réunion Island, in patients with Fryns syndrome. Eur J Hum Genet.
2018 Mar;26(3):340-349.

Fryns syndrome (FS) is a multiple malformations syndrome with major features of congenital diaphragmatic hernia, pulmonary hypoplasia, craniofacial dysmorphic features, distal digit hypoplasia, and a range of other lower frequency malformations. FS is typically lethal in the fetal or neonatal period. Inheritance is presumed autosomal recessive. Although no major genetic cause has been identified for FS, biallelic truncating variants in PIGN, encoding a component of the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway, have been identified in a limited number of cases with a phenotype compatible with FS. Biallelic variants in PIGN, typically missense or compound missense with truncating, also cause multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Here we report six further patients with FS with or without congenital diaphragmatic hernia and recessive loss of function PIGN alleles, including an intragenic deletion with a likely founder effect in La Réunion and other Indian Ocean islands. Our results support the hypothesis that a spectrum of phenotypic severity is associated with recessive PIGN variants, ranging from FS at the extreme end, caused by complete loss of function, to MCAHS1, in which some residual PIGN function may remain. Our data add FS resulting from PIGN variants to the catalog of inherited GPI deficiencies caused by the disruption of the GPI-anchor biosynthesis pathway.

Reynolds KK, Juusola J, Rice GM, Giampietro PF. Prenatal presentation of Mabry syndrome with congenital diaphragmatic hernia and phenotypic overlap with Fryns syndrome. Am J Med Genet A. 2017 Oct;173(10):2776-2781.

We report on a family in which initial features were compatible with Fryns syndrome. The first sibling was a stillborn female with a left diaphragmatic hernia (DH). Her clinical features overlapped with Fryns syndrome. The second pregnancy, a male fetus, was followed for polyhydramnios, hypoplastic mandible, mild enlargement of the fetal bladder, hydronephrosis, and rocker bottom foot deformities. He had facial features similar to his sibling and a large cleft of the secondary palate, small jaw, and secundum atrial septal defect. He underwent surgical repair of imperforate anus, intestinal malrotation, and placement of mucous fistula for biopsy positive Hirschsprung disease. An elevated alkaline phosphatase level of 1569 U/L was reported. Whole exome sequencing performed on the second child demonstrated compound heterozygosity for the PIGV gene with the p.A341E and p.A418D variants in trans. Hyperphosphatasia with mental retardation syndrome (HPMRS) is caused by mutations in PIGV and includes hyperphosphatasia as a diagnostic hallmark. Our patient exhibited hyperphosphatasia but without any storage material in his skin cells. His features remain similar to his sister's, but includes seizures and lacks diaphragmatic hernia. Until now, HPMRS and Fryns syndrome, despite overlapping features, were considered mutually exclusive as HPMRS involves hyperphosphatasia and Fryns typically exhibits DH. Recent identification of PIGN mutations associated with several cases of Fryns syndrome point to a common pathogenetic etiology involving inborn errors of the glycosylphosphatidylinositiol anchor biosynthetic pathway. A diagnosis of HPMRS should be considered when DH is encountered on prenatal ultrasound.

Holtz AM, Harrington AW, McNamara ER, Kielian A, Soul JS, Martinez-Ojeda M, Levy PT. Expanding the phenotypic spectrum of Mabry Syndrome with novel PIGO gene variants associated with hyperphosphatasia, intractable epilepsy, and complex gastrointestinal and urogenital malformations. Eur J Med Genet. 2019 Nov 5:103802. doi: 10.1016/j.ejmg.2019.103802. [Epub ahead of print]

Mabry syndrome is a glycophosphatidylinositol (GPI) deficiency characterized by intellectual disability, distinctive facial features, intractable seizures, and hyperphosphatasia. We expand the phenotypic spectrum of inherited GPI deficiencies with novel bi-allelic phosphatidylinositol glycan anchor biosynthesis class O (PIGO) variants in a neonate who presented with intractable epilepsy and complex gastrointestinal and urogenital malformations.

Zehavi Y, von Renesse A, Daniel-Spiegel E, Sapir Y, Zalman L, Chervinsky I, Schuelke M, Straussberg R, Spiegel R. A homozygous PIGO mutation associated with severe infantile epileptic encephalopathy and corpus callosum hypoplasia, but normal alkaline phosphatase levels. Metab Brain Dis. 2017 Dec;32(6):2131-2137.

We describe two sisters from a consanguineous Arab family with global developmental delay, dystrophy, axial hypotonia, epileptic encephalopathy dominated by intractable complex partial seizures that were resistant to various anti-epileptic treatments. Dysmorphic features comprised low set ears, hypertelorism, upslanting palpebral fissures, a broad nasal bridge, and blue sclera with elongated eyelashes. Brain MRI in both children showed a corpus callosum hypoplasia that was evident already in utero and evolving cortical atrophy. Autozygosity mapping in combination with Whole Exome Sequencing revealed a homozygous missense mutation in the PIGO gene [c.765G > A, NM_032634.3] that affected a highly conserved methionine in the alkaline phosphatase-like core domain of the protein [p.(Met255Ile), NP_116023.2]. PIGO encodes the GPI-ethanolamine phosphate transferase 3, which is crucial for the final synthetic step of the glycosylphosphatidylinositol-anchor that attaches many enzymes to their cell surfaces, such as the alkaline phosphatase and granulocyte surface markers. Interestingly, measurement of serum alkaline phosphatase activities in both children was normal or only slightly elevated. Quantification of granulocyte surface antigens CD16/24/59 yielded reduced levels only for CD59. Phenotype analysis of our and other published patients with PIGO mutations reveals a more severe affectation and predominantly neurological presentation in individuals carrying a mutation in the alkaline phosphatase-like core domain thereby hinting towards a genotype-phenotype relation for PIGO gene mutations.

No comments:

Post a Comment