Just to be safe, she has come to the ED to get checked out
because she could not get an appointment to see her primary care provider. She
denies any past medical problems, but she does report experiencing a similar
syncopal episode a few years ago that also occurred while she had been exerting
herself. At that time, she had dismissed the episode as nothing important
because she had skipped breakfast that morning. The patient also recalls that
her younger brother has had similar episodes of syncope over the past few
years.
She has no recent history of illness or fever and does not
report any chest pains, shortness of breath, or palpitations subsequent to the
event. She also denies any recent dieting or use of any over-the-counter or
illicit drugs. Her menses have been normal and she takes a multivitamin every
day. She is not currently taking any medications and denies having any
allergies. She is a high school senior and lives at home in a safe environment
with her family. She is looking forward to starting college in the fall. She
denies knowledge of any cardiac or neurologic problems in her family...
[Examination was unremarkable. Among other studies, an EKG was obtained.]
The
ECG demonstrates prolongation of the QT segment as demonstrated by a QT
interval of 0.6 seconds, with a calculated QTc of 0.61 seconds
The diagnosis of [long QT syndrome] LQTS has been increasingly recognized as a
cause of unexplained dizziness, syncope, and sudden cardiac death in otherwise
healthy, young individuals. The prevalence is difficult to estimate, but rough
estimates place the occurrence at 1 in 10,000 individuals. This number is
difficult to ascertain because 10%-15% of patients with LQTS genetic defects
have a normal QTc duration at various times Most patients with congenital
forms of the disease develop symptoms in childhood or adolescence. The age of
first presentation is somewhat dependent on the specific genotype inherited.
The possibility of this diagnosis should be considered in any patient with a
history similar to the one in this case.
Congenital LQTS is now considered to be a heritable
abnormality in one of the cardiac myocyte membrane sodium and potassium
channels. Several specific genotypes have been identified, with different
mutations. Twelve different types of LQTS have been identified, with types 1,
2, and 3 accounting for most cases (45%, 45%, and 7%, respectively). In both
LQT1 and LQT2, the potassium ion current is affected. However, in LQT3, the
sodium ion current is affected. Other notable elements of the most common forms
are include the following:
LQT1: Swimming or strenuous exercise can trigger malignant
arrhythmias in this type.
LQT2: Sudden emotional stress can trigger arrhythmias in
this type. Postpartum women with LQT2 are susceptible.
LQT3: Malignant arrhythmias occur during rest.
The QT interval reflects the duration of activation and
recovery of the ventricular myocardium. Prolonged recovery from electrical
excitation raises the chance for dispersing refractoriness, when some parts of
myocardium may be refractory to depolarization. From a physiologic standpoint,
dispersion occurs with repolarization between three layers of the heart. Also,
the repolarization phase is often prolonged in the mid-myocardium. Thus, the T
wave is normally wide; the interval from Tpeak to Tend (Tp-e) indicates the
transmural dispersion of repolarization (TDR). In LQTS, TDR increases and
creates a functional substrate for transmural reentry.
In LQTS, mutations lead to a prolonged QT segment resulting
from prolongation of cardiomyocyte repolarization, with the potential for
degeneration to a specific type of polymorphic ventricular tachycardia known as
torsade de pointes (translated as "twisting of the points"). These
episodes of torsades de pointes are more likely to occur with increased catecholamine
levels (adrenergic dependent or tachycardia dependent). Torsade de pointes is
characterized by a ventricular rate greater than 200 bpm, in which the QRS
structure has an undulating axis that shifts polarity about the baseline. This
rhythm can spontaneously convert to a sinus rhythm or degenerate into
ventricular fibrillation. Depending on the duration of arrhythmic activity and
concomitant comorbidities, patients may experience dizziness, seizures,
syncope, or sudden death. Episodes are usually extremely brief and resolve
spontaneously, but they have a tendency to recur in rapid succession, leading
to more serious complications.
A related important point to assess in patients with a
familial history of unexplained syncope or sudden death is an associated
history of hearing loss. Some forms of LQTS (eg, Jervell and Lange-Nielsen
syndrome) are accompanied by congenital neuronal deafness. Other forms (eg,
Romano-Ward syndrome) do not have an associated hearing loss. Formal diagnosis
of congenital LQTS is usually established on the basis of the clinical
presentation, the ECG findings, and the family history. Genetic testing for
specific deficits is not currently the standard of care.
In addition to the congenital forms, acquired forms of LQTS
are commonly encountered in the ED. Acquired QT prolongation is usually induced
by medication. Acquired forms are often the result of drug therapy with various
antiarrhythmic medications (primarily those of class IA and class III),
phenothiazines, cyclic depressants, antihistamines, and some antimicrobials
(quinolones). Resultant torsade de pointes is usually observed within one to
two weeks of the start of the QT-altering medication; however, delayed
presentations can also occur if a combination of medications that affect the QT
interval are added to the patient's regimen.
Other causes of prolongation of the QT interval include
electrolyte disturbances (hypokalemia, hypomagnesemia, and, in rare cases,
hypocalcemia), myocardial ischemia, autonomic neuropathy, hypothyroidism, use
of drugs (eg, cocaine, amphetamines), and cerebrovascular accidents
(intraparenchymal or subarachnoid hemorrhage).
Treatment of patients with LQTS can be divided into short-term
and long-term strategies. Short-term
strategies include immediate management of unstable rhythms (torsade de
pointes), regardless of the specific etiology of the QT prolongation. Immediate
treatment with magnesium sulfate is the agent of choice for all forms of LQTS.
This is frequently accompanied by potassium chloride, even in patients for whom
the serum potassium level is only in the lower range of normal. In acquired
LQTS, withdrawal of the offending agent and/or electrolyte repletion is often
all that is necessary to prevent recurrences in most patients. The exception is
in patients with sick sinus syndrome or atrioventricular blocks in which a
pause or bradycardia precipitates torsades de pointes. These patients require
permanent pacemakers. In contrast, all patients with congenital LQTS require
long-term treatment.
The cornerstone of therapy is life-long adrenergic blockade
with beta-blockers, which reduces the risk for arrhythmia. In some patients,
beta-blockers may also shorten the QT interval. Propranolol and nadolol are the
two most commonly prescribed beta-blockers. These patients should also avoid
any drugs that are known to prolong the QT interval or those that reduce serum
potassium or magnesium levels. Advice is mixed regarding whether all
asymptomatic patients should be treated with beta-blockers, or just those at high
risk for an acute cardiac event.
In cases refractory to adrenergic blockade, several
additional, more aggressive measures are also available. Left thoracic
sympathectomy may be used in conjunction with beta-blockers to provide
increased adrenergic blockade. The permanent implantation of a pacemaker or
cardiac defibrillator has been effective in reducing the incidence of sudden
cardiac death in high-risk patients. In certain subtypes of LQTS, patients are
advised to avoid strenuous activity, in particular swimming or diving.
At this time, there are no established gene-specific
therapies widely in use, although several treatment modalities are under
investigation in both limited human trials and animal models. All family
members of those patients with suspected LQTS are encouraged to be screened by
an ECG, but not by genetic testing. Genetic testing is not extensive enough to
cover all potential mutations at this time, and it is reserved mainly as a
research tool.
The patient in this case was admitted to a cardiac telemetry
unit after a discussion with the on-call cardiologist for further evaluation
and management. On the basis of her family history, clinical story, and lack of
any medications known to prolong QT intervals, she was suspected to have a
congenital adrenergic-dependent form of LQTS. Beta-blocker therapy was
initiated while in the hospital. An extensive discussion about the long-term
risks associated with LQTS occurred between the patient and the cardiologist
during her admission, and she was additionally offered a defibrillator and
further outpatient ambulatory telemetry monitoring. She was discharged to home
to be followed up by her primary care provider and an outpatient cardiologist
in order to assess her response to the initiation of therapy. Other members of
her family, in particular her brother, were encouraged to seek consultation for
LQTS.
https://reference.medscape.com/viewarticle/831467_2
See: https://childnervoussystem.blogspot.com/2019/10/a-10-year-old-boy-with-fainting-spells.html
https://childnervoussystem.blogspot.com/2017/12/syncope-in-young-female.html
See: https://childnervoussystem.blogspot.com/2019/10/a-10-year-old-boy-with-fainting-spells.html
https://childnervoussystem.blogspot.com/2017/12/syncope-in-young-female.html
No comments:
Post a Comment