Saturday, January 20, 2018

CTNNB1 mutations

Inspired by a colleague's patient

Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H, van den Boogaard MJ, Bramswig N, Büttner C, Cremer K, Czeschik JC, Engels H, van Gassen K, Graf E, van Haelst M, He W, Hogue JS, Kempers M, Koolen D, Monroe G, de Munnik S, Pastore M, Reis A, Reuter MS, Tegay DH, Veltman J, Visser G, van Hasselt P, Smeets EE, Vissers L, Wieland T, Wissink W, Yntema H, Zink AM, Strom TM, Lüdecke HJ, Kleefstra T, Wieczorek D. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet. 2015 Jan;134(1):97-109.

Abstract
Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

Dubruc E, Putoux A, Labalme A, Rougeot C, Sanlaville D, Edery P. A new intellectual disability syndrome caused by CTNNB1 haploinsufficiency. Am J Med Genet A. 2014 Jun;164A(6):1571-5.

Abstract
A girl patient born to healthy nonconsanguineous parents was referred at age 3 years and 2 months to our genetics department for testing due to developmental delay and postnatal microcephaly. Initial clinical evaluation revealed an overall developmental delay, mildly dysmorphic features, thin, sparse fair hair, and fair skin. Postnatal microcephaly and progressive ataxia and spasticity appeared later. Array CGH karyotyping showed a 333 kb de novo microdeletion on 3p22 covering the entire genomic sequence of a single gene, CTNNB1, which codes for β-catenin. β-catenin is a sub-unit of a multiprotein complex, which is part of the Wnt signaling pathway. In mice, a conditional homozygous β-catenin knockout displays loss of neurons, impaired craniofacial development, and hair follicle defects, which is similar to the phenotype presented by the patient described in this clinical report. Thus, CTNNB1 haploinsufficiency causes neuronal loss, craniofacial anomalies and hair follicle defects in both humans and mice. Point mutations in CTNNB1 in human have recently been reported but this is the first observation of a new recognizable multiple congenital anomaly/mental retardation syndrome caused by CTNNB1 haploinsufficiency. This clinical report should prompt a search for point mutations in CTNNB1 in patients presenting developmental delay, mild hair, skin and facial anomalies, and neurodegeneration characterized by postnatal microcephaly, and progressive ataxia and spasticity.

Winczewska-Wiktor A, Badura-Stronka M, Monies-Nowicka A, Nowicki MM, Steinborn B, Latos-Bieleńska A, Monies D. A de novo CTNNB1 nonsense mutation associated with syndromic atypical hyperekplexia, microcephaly and intellectual disability: a case report. BMC Neurol. 2016 Mar 12;16:35.

Abstract
BACKGROUND:
In addition to its role in cell adhesion and gene expression in the canonical Wingless/integrated Wnt signaling pathway, β-catenin also regulates genes that underlie the transmission of nerve impulses. Mutations of CTNNB1 (β-catenin) have recently been described in patients with a wide range of neurodevelopmental disorders (intellectual disability, microcephaly and other syndromic features). We for the first time associate CTNNB1 mutation with hyperekplexia identifying it as an additional candidate for consideration in patients with startle syndrome.

CASE PRESENTATION:
We describe an 11 year old male Polish patient with a de novo nonsense mutation in CTNNB1 who in addition to the major features of CTNNB1-related syndrome including intellectual disability and microcephaly, exhibited hyperekplexia and apraxia of upward gaze. The patient became symptomatic at the age of 20 months exhibiting delayed speech and psychomotor development. Social and emotional development was normal but mild hyperactivity was noted. Episodic falls when startled by noise or touch were observed from the age of 8.5 years, progressively increasing but never with loss of consciousness. Targeted gene panel next generation sequencing (NGS) and patient-parents trio analysis revealed a heterozygous de novo nonsense mutation in exon 3 of CTNNB1 identifying a novel association of β-catenin with hyperekplexia.

CONCLUSION:
We report for the first time a clear association of mutation in CTNNB1 with an atypical syndromic heperekplexia expanding the phenotype of CTNNB1-related syndrome. Consequently CTNNB1 should be added to the growing list of genes to be considered as a cause of startle disease or syndromic hyperekplexia.

Dong F, Jiang J, McSweeney C, Zou D, Liu L, Mao Y. Deletion of CTNNB1 in inhibitory circuitry contributes to autism-associated behavioral defects. Hum Mol Genet. 2016 Jul 1;25(13):2738-2751.

Abstract

Mutations in β-catenin (CTNNB1) have been implicated in cancer and mental disorders. Recently, loss-of-function mutations of CTNNB1 were linked to intellectual disability (ID), and rare mutations were identified in patients with autism spectrum disorder (ASD). As a key regulator of the canonical Wnt pathway, CTNNB1 plays an essential role in neurodevelopment. However, the function of CTNNB1 in specific neuronal subtypes is unclear. To understand how CTNNB1 deficiency contributes to ASD, we generated CTNNB1 conditional knockout (cKO) mice in parvalbumin interneurons. The cKO mice had increased anxiety, but had no overall change in motor function. Interestingly, CTNNB1 cKO in PV-interneurons significantly impaired object recognition and social interactions and elevated repetitive behaviors, which mimic the core symptoms of patients with ASD. Surprisingly, deleting CTNNB1 in parvalbumin-interneurons enhanced spatial memory. To determine the effect of CTNNB1 KO in overall neuronal activity, we found that c-Fos was significantly reduced in the cortex, but not in the dentate gyrus and the amygdala. Our findings revealed a cell type-specific role of CTNNB1 gene in regulation of cognitive and autistic-like behaviors. Thus, this study has important implications for development of therapies for ASDs carrying the CTNNB1 mutation or other ASDs that are associated with mutations in the Wnt pathway. In addition, our study contributes to a broader understanding of the regulation of the inhibitory circuitry.

No comments:

Post a Comment