Four days after undergoing major surgery, 21-year-old Kris
Boesen picked up a smartphone and sent a text. It was the first message that he
had sent in months.
But what was truly remarkable was that a man who was once
almost completely paralyzed was holding a phone at all.
It hadn’t always been like this. One night in March changed
Boesen’s life. He was driving along a winding stretch of wet road in Maricopa,
California, when his white Nissan 350Z fishtailed out of control. The sports
car careened into a curb, a tree and then a telephone pole, breaking Boesen’s
neck. After the accident, Boesen could only move his left arm up and down, and
his hands were stuck in a clenched position. He couldn’t hold a fork to feed
himself or use his arms to operate a wheelchair. He couldn’t use his legs,
either.
“I was basically just existing,” Boesen says. “I wasn’t
really living my life.”
Boesen’s neurosurgeon at the local hospital, who fused his
neck bones right after the accident, recognized that Boesen might be a
candidate for a new treatment being offered through a clinical trial at Keck
Medicine of USC. The surgeon contacted neurologist Charles Liu, director of the
USC Neurorestoration Center. Liu’s procedure is part of a clinical trial
sponsored by the California Institute for Regenerative Medicine through
Asterias Biotherapeutics, and involving five other clinical sites, with a goal
of helping people with spinal cord injuries gain independence…
Speaking with Boesen’s family, Liu carefully outlined the
operation, which would involve injecting stem cells directly into the young
man’s spinal cord. The surgery was meant to demonstrate that the procedure was
safe, and the physicians hoped Boesen would gain more movement, as well. As Liu
explained, it could make the difference between being almost fully paralyzed or
being able to use his arms and hands to control a wheelchair or phone.
But Liu also outlined the risks. Boesen might lose what
little arm movement he had. There was also the possibility that the stem cells
could form a tumor.
The family waited until Boesen could breathe and speak on
his own, so he could weigh the risks and decide whether he wanted to give his
consent. A few weeks after the accident, doctors removed his ventilator, and
his father told Boesen about the trial.
“Heck, yeah,” he responded. “We’ve got to do this.”…
The stem cells Liu had to offer are called oligodendrocyte
progenitor cells. Oligodendrocytes make the crucial insulating material, called
myelin, that surrounds the wire-like sections of the body’s nerve cells.
Scientists believe that the stem cells not only repair the damaged insulation,
but also invite blood vessels back into the injury site. Plus, they release
factors that help nourish nerves, potentially reviving nerves that were nearly
dead. Asterias Biotherapeutics, based in Silicon Valley, grows the therapeutic
cells in a lab.
Liu had to time the surgery just right. In the first weeks
after the accident, swelling and inflammation in Boesen’s spinal cord wouldn’t
allow the stem cells to survive. After about a month, scar tissue filling the
spinal cord would interfere with the cells’ effects.
In early April, a month after his accident, Boesen was
wheeled into an operating room at Keck Medical Center of USC. Liu and a
surgical team opened the back of Boesen’s neck, cut a nick in the tough
membrane surrounding his spinal cord, and slid in a needle. The
anesthesiologist stopped Boesen’s breathing, so the motion of his lungs wouldn’t
move his spinal cord. Liu held his breath too, as he slowly squeezed 10 million
stem cells—thick, like toothpaste—out of the syringe. Then the team waited,
watched and hoped…
For Boesen, being part of the clinical trial was
life-changing. Within months he could lift weights, write his name, operate a
motorized wheelchair and feed himself. Boesen’s natural recovery process and
rehabilitation could have contributed to the improvement, but his recovery has
differed significantly from what doctors normally see during treatment for this
type of injury, Liu says.
Like anyone steeped in science, Liu is wary of getting too
enthusiastic about early results. He’s also careful not to predict the path of
Boesen’s progress. The treatment probably won’t reverse an injury so that
people like Boesen can walk again, but it’s realistic to hope that a small
amount of repair in the spine could translate to big benefits in terms of arm
movement…
Boesen is now back at home with his parents in Bakersfield,
planning for the future. He wants to return to his career as an insurance
broker and live a more independent life. “All of this wouldn’t have been
possible without the stem cells,” Boesen says.
The study isn’t over, and the treatment is not yet ready to
become a standard therapy. But with promising results from Boesen, as well as
others in the trial at different sites, the researchers now plan to double the
dose, to 20 million stem cells. They’ll also be treating people with
less-severe spinal injuries, who would have been too risky to include in the
initial tests for safety because they have more function to lose.
http://keck.usc.edu/stem-cell-therapy-gives-paralyzed-man-second-chance-at-independence/
Courtesy of: https://neurologistconnect.com/newsdetail/587404cf634e88e4198b456b?SKUID=6656d46c04553656b04bf4a8e0248071&mkt_tok=eyJpIjoiWXpFeVl6QXdaRFF6WVRsaiIsInQiOiJTSTNwaUk1UElSaU90dHBtcUNmQmR6cEZQNm0wTmtIK3ZtWWZoblkzcFRLNnhVdnpPRzJcL09Eam5SY0tlVFRXMGxUWG1wdjJHMkU2eGtWa1dreEc2NE4yak9WNkw0NHlGM3BWK2V6SnBVYkdXdVVaMldaMXd0R0hWeGRZRUxlMG8ifQ%3D%3D
No comments:
Post a Comment