Inspired by a patient
Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol. 2017 Aug 7;216(8):2443-2461.
Belvindrah R, Natarajan K, Shabajee P, Bruel-Jungerman E, Bernard J, Goutierre M, Moutkine I, Jaglin XH, Savariradjane M, Irinopoulou T, Poncer JC, Janke C, Francis F. Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol. 2017 Aug 7;216(8):2443-2461.
Abstract
Brain development involves extensive migration of neurons.
Microtubules (MTs) are key cellular effectors of neuronal displacement that are
assembled from α/β-tubulin heterodimers. Mutation of the α-tubulin isotype
TUBA1A is associated with cortical malformations in humans. In this study, we
provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice
carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial
cells are dispersed along the rostral migratory stream in postnatal and adult
brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and
increased neuronal branching, which correlated with directionality alterations
and perturbed nucleus-centrosome (N-C) coupling. Tuba1a mutation led to
increased straightness of newly polymerized MTs, and structural modeling data
suggest a conformational change in the α/β-tubulin heterodimer. We show that
Tuba8, another α-tubulin isotype previously associated with cortical
malformations, has altered function compared with Tuba1a. Our work shows that
Tuba1a plays an essential, noncompensated role in neuronal saltatory migration
in vivo and highlights the importance of MT flexibility in N-C coupling and
neuronal-branching regulation during neuronal migration.
Aiken J, Buscaglia G, Bates EA, Moore JK. The α-Tubulin gene
TUBA1A in Brain Development: A Key Ingredient in the Neuronal Isotype Blend.
J Dev Biol. 2017 Sep;5(3).
Abstract
Microtubules are dynamic cytoskeletal polymers that mediate
numerous, essential functions such as axon and dendrite growth and neuron
migration throughout brain development. In recent years, sequencing has
revealed dominant mutations that disrupt the tubulin protein building blocks of
microtubules. These tubulin mutations lead to a spectrum of devastating brain
malformations, complex neurological and physical phenotypes, and even fatality.
The most common tubulin gene mutated is the α-tubulin gene TUBA1A, which is the
most prevalent α-tubulin gene expressed in post-mitotic neurons. The normal
role of TUBA1A during neuronal maturation, and how mutations alter its function
to produce the phenotypes observed in patients, remains unclear. This review
synthesizes current knowledge of TUBA1A function and expression during brain
development, and the brain malformations caused by mutations in TUBA1A.
Mencarelli A, Prontera P, Stangoni G, Mencaroni E, Principi
N, Esposito S. Epileptogenic Brain Malformations and Mutations in Tubulin
Genes: A Case Report and Review of the Literature. Int J Mol Sci. 2017 Oct
29;18(11).
Abstract
Malformations of the cerebral cortex are an important cause
of developmental disabilities and epilepsy. Neurological disorders caused by
abnormal neuronal migration have been observed to occur with mutations in
tubulin genes. The α- and β-tubulin genes encode cytoskeletal proteins, which
play a role in the developing brain. TUBA1A mutations are associated with a
wide spectrum of neurological problems, which are characterized by peculiar
clinical details and neuroradiologic patterns. This manuscript describes the case
of a nine-year-old girl with microcephaly, mild facial dysmorphisms, epileptic
seizures, and severe developmental delay, with a de novo heterozygous
c.320A>G [p.(His 107 Arg)] mutation in TUBA1A gene, and the clinical aspects
and neuroimaging features of "lissencephaly syndrome" are summarized.
This case shows that TUBA1A mutations lead to a variety of brain malformations
ranging from lissencephaly with perisylvian pachygyria to diffuse posteriorly
predominant pachygyria, combined with internal capsule dysgenesis, cerebellar
dysplasia, and callosal hypotrophy. This peculiar neuroradiological pattern, in
combination with the usually severe clinical presentation, suggests the need
for future molecular studies to address the mechanisms of TUBA1A mutation-induced
neuropathology.
No comments:
Post a Comment