Monday, November 7, 2016

SUFU mutations

Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002 Jul;31(3):306-10.

The sonic hedgehog (SHH) signaling pathway directs the embryonic development of diverse organisms and is disrupted in a variety of malignancies. Pathway activation is triggered by binding of hedgehog proteins to the multipass Patched-1 (PTCH) receptor, which in the absence of hedgehog suppresses the activity of the seven-pass membrane protein Smoothened (SMOH). De-repression of SMOH culminates in the activation of one or more of the GLI transcription factors that regulate the transcription of downstream targets. Individuals with germline mutations of the SHH receptor gene PTCH are at high risk of developmental anomalies and of basal-cell carcinomas, medulloblastomas and other cancers (a pattern consistent with nevoid basal-cell carcinoma syndrome, NBCCS). In keeping with the role of PTCH as a tumor-suppressor gene, somatic mutations of this gene occur in sporadic basal-cell carcinomas and medulloblastomas. We report here that a subset of children with medulloblastoma carry germline and somatic mutations in SUFU (encoding the human suppressor of fused) of the SHH pathway, accompanied by loss of heterozygosity of the wildtype allele. Several of these mutations encode truncated proteins that are unable to export the GLI transcription factor from nucleus to cytoplasm, resulting in the activation of SHH signaling. SUFU is a newly identified tumor-suppressor gene that predisposes individuals to medulloblastoma by modulating the SHH signaling pathway through a newly identified mechanism.

Aavikko M, Li SP, Saarinen S, Alhopuro P, Kaasinen E, Morgunova E, Li Y, Vesanen K, Smith MJ, Evans DG, Pöyhönen M, Kiuru A, Auvinen A, Aaltonen LA, Taipale J, Vahteristo P. Loss of SUFU function in familial multiple meningioma. Am J Hum Genet. 2012 Sep 7;91(3):520-6.

Meningiomas are the most common primary tumors of the CNS and account for up to 30% of all CNS tumors. An increased risk of meningiomas has been associated with certain tumor-susceptibility syndromes, especially neurofibromatosis type II, but no gene defects predisposing to isolated familial meningiomas have thus far been identified. Here, we report on a family of five meningioma-affected siblings, four of whom have multiple tumors. No NF2 mutations were identified in the germline or tumors. We combined genome-wide linkage analysis and exome sequencing, and we identified in suppressor of fused homolog (Drosophila), SUFU, a c.367C>T (p.Arg123Cys) mutation segregating with the meningiomas in the family. The variation was not present in healthy controls, and all seven meningiomas analyzed displayed loss of the wild-type allele according to the classic two-hit model for tumor-suppressor genes. In silico modeling predicted the variant to affect the tertiary structure of the protein, and functional analyses showed that the activity of the altered SUFU was significantly reduced and therefore led to dysregulated hedgehog (Hh) signaling. SUFU is a known tumor-suppressor gene previously associated with childhood medulloblastoma predisposition. Our genetic and functional analyses indicate that germline mutations in SUFU also predispose to meningiomas, particularly to multiple meningiomas. It is possible that other genic mutations resulting in aberrant activation of the Hh pathway might underlie meningioma predisposition in families with an unknown etiology.

Šoukalová J, Vejmělková K, Cermanová T, Kašíková K, Mikulášová A, Janyšková H, Melichárková K, Pavelka Z, Ježová M, Pospíšilová Š, Kuglík P, Valášková I, Gaillyová R, Štěrba J, Zitterbart K. [Identification of a Family with SUFU Germline Deletion Based on a Case of Desmoplastic Medulloblastoma in an Infant]. Klin Onkol. 2016;29 Suppl 1:S83-8. Czech.

Medulloblastoma, an embryonal neuroectodermal tumor of the cerebellum, is the most common malignant brain tumor in children. There are approximately 15 cases diagnosed in the Czech Republic each year. The recent World Health Organization classification recognizes several histopathological subtypes of medulloblastoma: classical, desmoplastic/ nodular with its extensive-nodularity variant, and anaplastic/ large-cell variant. Further molecular analysis identified four basic subgroups of medulloblastoma: WNT, SHH, Group 3, and Group 4. The subgroup of SHH meduloblastoma is associated with somatic mutations of SHH, PTCH1, SUFU, SMO and TP53, while the most common mutations found in infants up to three years of age were PTCH1 and SUFU. The majority of medulloblastomas are sporadic diseases, whereas only about 5- 10% of all cases occur in connection with hereditary genetic syndromes.
We present a case of a 21-months old girl diagnosed with a localized posterior fossa tumor. The histopathological examination revealed a desmoplastic/ nodular medulloblastoma. The treatment comprised a radical exstirpation of the tumor followed by adjuvant chemotherapy. With the use of array-CGH, a partial biallelic deletion of the SUFU gene (locus 10q24.32) was detected in the tumor DNA, whereas a monoallelic deletion was found in the peripheral lymphocyte DNA of the patient. These findings were confirmed by an independent qPCR method. Monoallelic germline deletion of SUFU was also identified in the patients mother, who was a healthy carrier. Pedigree of the family suggested a transition of the germline deletion of SUFU, since another brain tumors (including one case diagnosed before the age of three years) were identified in previous generations.
Germline mutations in SUFU gene are believed to predispose to infant desmoplastic/ nodular medulloblastomas, basal cell carcinomas and meningiomas. The susceptibility gene shows autosomal dominant inheritance with an incomplete penetrance. There is no evidence-based surveillance strategy suggested for the carriers of germline SUFU mutations/ deletions so far. Our recommendation is based both on a family history of our patient and similar cases described in the literature. Since the germinal mutations in SUFU are responsible for up to 50% of all desmoplastic medulloblastomas in children under three years of age, genetic testing of SUFU should be encouraged in this population of patients.

Inspired by a healthy patient discovered to have a SUFU mutation after his younger brother presented with medulloblastoma.

No comments:

Post a Comment